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Abstract–Using our previous results [1-5] on control 

and synchronization we design a coupling for obtaining 
amplification (attenuation) of nonlinear mismatched  
systems. Numerical results and experimental realization 
are shown.   
 
1. Introduction 

 
Amplifiers usually change the spectrum of the original 

signal if this is not small enough. If the linearity range is 
crossed then this frequently occurs. Using the 
methodology of the Open-Plus-Closed-Loop (OPCL) 
synchronization [1, 2] we obtained a method of 
amplification (attenuation) that keeps the spectrum of the 
original signal undistorted. In addition this methodology 
ensures stable synchronization (α=1) and 
antisynchronization (α=-1) as special cases. In other 
words we synchronize the dynamics of a system x(t)  with 
an amplified (attenuated ) one, αy(t). For α>0 we have 
complete synchronization (CS) between x and αy(t) and 
for  α <0      we have antisynchronization (AS) between x 
and αy(t). The OPCL synchronization works for master-
slave synchronization [2, 3], mutual synchronization [4, 5] 
and synchronization of networks [6].  
  
2. General Coupling for Amplification (Attenuation) 
 
2.1. OPCL  Method  

 
The OPCL method offers a driving for a general system   
                                                 (1) nRxxFx ∈= ),(&

in order to obtain a desired dynamics g(t). This coupling is        
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where H is a Hurwitz matrix (a matrix with negative real 
part eigenvalues). The driven system  

                                              (3) ),()( gxDxFx +=&
will achieve the dynamics g(t) [1,2] after a transient time 
that depends on  H.  

 Let’s consider a driver system,  
                                   (4)  ),()( yFyFy Δ+=& nRy ∈ 
 where ΔF(y) contains the mismatch parameters. In this 
case, the driven system will be  
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2.2. Application to Lorenz Systems 

 
We present the OPCL method for a Lorenz system 
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 We consider another Lorenz system with mismatch                               
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σΔ , rΔ and bΔ are the mismatches in parameters.   
The coupling is derived using (6), and the driven Lorenz 
system (5) is obtained  
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The Hurwitz H (3x3 matrix) for the driven Lorenz system 
is   
     H= Tbppppr −−+− 4321   ;1  ;0σσ      (10) 
 T denotes the transpose of a matrix. The coupling in (9) is 
simplified by an appropriate choice of the elements, pk 
(k=1, 2, 3, 4), of the Hurwitz matrix H. A possible choice 
is p1<1-r, p2=0, p3=0 and p4=0 as elaborated earlier [2]. 
For further reduction in complexity of coupling, we 
choose the driver parameters as identical to the response 
except r+Δr=38. The number of mismatches is thereby 
limited to only one, Δr=10. 
 
2.3. Numerical Results for Lorenz Systems  
 
Results of numerical simulations of the coupled mismatch 
Lorenz system (8)-(9) are presented in Fig.1. The response 
variables [x1, x2, x3], and twice of the driver variables [y1, 
y2, y3] are plotted in the upper row where all the time 
series are identical in amplitude but opposite in phase. A 
plot of (x1+2y1) in the lower row left panel shows a 
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constant value at zero with time that confirms an 
amplification of the driver in the AS regime by a factor of 
two in the response as expected for α=-2. The 
amplification is also realizable in the CS regime by simply 
taking α=2 as shown in the lower row right panel of Fig.1. 
Similarly, attenuation is observed in both the AS and the 
CS regimes by taking 10 << α . Stable synchronization is 
also achieved when all the parameters are different but 
figures are not presented. 
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Fig.1. AS and CS and amplification in coupled Lorenz system. 
Driven system: r=28, σ=10, b=8/3, identical driver except 
Δr=10. Upper row AS (α=-2) : time series of x1  and 2y1 in the 
left, x2 and2y2 in the middle, x3 and 2y3 in the right panels. Driver 
in solid lines and response in dotted lines. Lower row: left panel 
confirms AS and amplification by the plot of x1+2y1=0 after the 
initial transients; plots of x1 vs. y1 confirm AS (α=-2) in the 
middle panel, CS (α=2) in the right panel.          
              
 2.4. Application to a Sprott System 
 
   We consider a Sprott system [7] with a single     
nonlinearity as given by 
                         (11) 3

2
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Another mismatch Sprott system is chosen as a driver                  
           (12) 3
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 After the coupling, the driven system (11) becomes          
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 The driver and the response are chaotic before coupling  
for a=0.225, Δa=0.025. For an appropriate choice [3, 4] 
of the parameter p=-1, we find AS and amplification for 
α=-2 as shown in Fig.2. In the upper row, the middle 
attractor (2D projection) is the response, which is an 
amplified and inverted version of the driver attractor in 
the left. Plot of x1 versus y1 in upper row right confirms 
AS. The time series of the driver and the response in, in 
the lower row left, are clearly in opposite phase although 
their amplitudes are different. A measure of (x1+2y1) 
maintains a zero value after the initial transients as seen 
in the lower row right panel. This confirms amplification 
of the driver attractor in the response by a factor of two 
(for α=-2) in the AS regime.  
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Fig.2. Amplification and AS in coupled Sprott system (12) 
and (13) . Upper row: phase portraits of driver in left, its 
enlarged version in the response at middle, axes are in same 
scale to compare attractor sizes; y1 vs. x1 plot in the right 
shows AS. Lower row: time series of y1 in dotted line, x1 in 
solid line in the left; plot of x1+2y1=0 in the right confirms AS 
and amplification by a factor of two (α=-2). 
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Nonlinear 
Coupling  

Fig.3. Two coupled Sprott circuits (12) and (13) under OPCL 
coupling. Oscillator-1 (12) is the driver and oscillator-2 (13) is 
the response. Nonlinear coupling from the driver to response is 
shown separately. Component values are noted in the circuit 
diagram. 
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3. Experimental Results  
 
        We present a physical realization of the coupled 
Sprott system in electronic circuit with experimental 
results.  Figure 3 shows the circuit diagram of the coupled 
Sprott system. The Op-amp U1-U5 (U6-U10) with 
associated resistances R1-R8 (R9-R16) and capacitances 
C1-C3 (C4-C6) represent each Sprott circuit. The OPCL 
coupling is designed using U11-U15. The experimental 
results as shown in Fig.4 are in good agreement with 
numerical results in Fig.2. 
 

                

           

             
 
Fig.4. Oscilloscope pictures of AS and amplification in two 
Sprott circuits: Upper row: 2D projection of drive in left, of 
amplified response in middle, and synchronization manifold of 
AS in right. Middle row: time series of driver in yellow. Lower 
row: response time series in blue. All axes in the pictures are in 
same scale.  
 
4. Conclusions 
    Here we presented a method of amplification 
(attenuation) of the signals of nonlinear systems keeping 
the spectrum. Numerical results and an experimental 
realization have been shown. More results are presented 
elsewhere [8].  
    We hope that present results will determine an 
increased interest in OPCL strategy and other engineering 
applications will be done in the near future. 
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