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Abstract—The act-and-wait concept, which re-
duces continuous-time systems with delays (i.e.,
infinite-dimensional systems) to discrete-time systems
(i.e., finite-dimensional systems), was applied to the
delayed feedback control (DFC) in our previous study
[Konishi, Kokame, Hara, 2011]. The present pa-
per provides an experimental verification of the DFC
based on the act-and-wait concept by using the well-
known double-scroll circuit. The act-and-wait DFC
is mainly implemented by a peripheral interface con-
troller (PIC). We confirm that the experimental results
roughly agree with the stability analysis.

1. Introduction

Controlling chaos has been a focus of intensive re-
search for more than two decades in nonlinear science
[1]. Delayed feedback control (DFC) [2], which is one
of the most popular methods for controlling chaos, is
now widely used to control various systems [3]. The
two limit sets, unstable periodic orbits (UPOs) and un-
stable fixed points (UFPs), can be stabilized by this
method. Although the stability analysis of DFC sys-
tems is needed to design controller, it is difficult to
analyze the stability because the stability is identical
to that of a time-periodic time-delay linear system.
There have been some theoretical interest in the sta-
bility analysis [4, 5, 6].

The stabilization of UFPs has created a growing at-
tention [7, 8, 9]. Kokame et al. showed a necessary and
sufficient condition for the existence of controller, and
provided a systematic procedure for designing it [10].
Unfortunately, this procedure can be used only for a
sufficiently short delay time. On the other hand, in
experimental situations, delayed feedback signals are
often realized by a bucket brigade delay line device or
a digital computer with an analog-digital-analog con-
verter [11, 12, 13]. As these electronic devices have the
finite operating speed, it is difficult to realize short de-
lay times. This fact implies that the UFPs in fast dy-
namical systems cannot be experimentally stabilized
by these devices. Although the multiple DFC [14, 15]
and time-varying DFC [16, 17] methods can solve this
problem, they require the implementation cost of mul-

tiple delay times or a high-speed time-varying delay.
In recent years, the periodic switching on-and-off

(act-and-wait) feedback, called the act-and-wait con-
trol concept, was proposed [18, 19]. This concept re-
duces the dynamics of the control systems with delay
to that of discrete-time systems without delay when
the waiting time is longer than the feedback delay
[20, 21, 22]. Very recently, we proposed the DFC
method based on the act-and wait concept, which can
solve the above problem. Furthermore, we provided
a systematic procedure to design a dead-beat delayed
feedback controller for the prototype two-dimensional
limit-cycle oscillator [23]1.

The present paper provides an experimental verifica-
tion of the act-and-wait DFC: UFPs in a well-known
double-scroll circuit are experimentally stabilized by
switching on-and-off delayed feedback. The controller
is implemented by a peripheral interface controller
(PIC). We show that the experimental results roughly
agree with the stability analysis.

2. DFC based on the act-and-wait concept [23]

Consider a chaotic oscillator,{
ẋ = f(x) + bu
y = cx

, (1)

where x ∈ Rm, y ∈ R, and u ∈ R are the state
variable, the output signal, and the control signal, re-
spectively. b ∈ Rm and c ∈ R1×m are the input and
output vectors. There exits an unstable fixed point
x∗ satisfying 0 = f(x∗). The controller with a time-
varying gain k(t) ∈ R is described by

u = k(t)(yτ − y), (2)

where yτ := y(t− τ) is the delayed output signal. Fig-
ure 1 illustrates the block diagram of the control sys-
tems. The time-varying gain,

k(t) =

{
0 t ∈ [nT, nT + tw)
k0 t ∈ [nT + tw, (n + 1)T )

, (3)

1Aside from our previous study, Ueta et al. proposed a par-
tial DFC method for stabilizing UPOs in a hybrid chaotic circuit
[24].
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Figure 1: Block diagram of control system consisting
of oscillator (1) and act-and-wait DFC (2).

Figure 2: Sketch of system state x and switch timing.

for n = 0, 1, . . ., is realized by turning switch SW on
and off with period T > 0. The system state x and
switch timing are sketched in Fig. 2. Here n ∈ Z+ is
the number of switching operations. For t ∈ [nT, nT +
tw), SW is turned off, where tw is the waiting period.
For t ∈ [nT + tw, (n + 1)T ), SW is turned on, where
T − tw is the active period. The assumption, T − tw ≤
τ ≤ tw ≤ T, is always used: this assumption reduces
the dynamics of control systems [18, 19].

Oscillator (1) with controller (2) is linearized around
x∗, {

δẋ = Aδx + bδu,

δu = k(t)c(δxτ − δx),
(4)

where δx := x − x∗, δxτ := δx(t − τ), and A :=
∂f(x∗)/∂x.

The mapping from the state at the start of switch-
ing period to that at the end of it is given by a m-
dimensional discrete-time system,

δx [(n + 1)T ] = Φδx [nT ] ,

where the transition matrix Φ is obtained by

Φ := exp {(A − k0bc)T + twk0bc}

+
∫ T

tw

exp {(A − k0bc) (T − s)}

k0bc exp {A(s − τ)}ds.

Note that x∗ is stable if and only if Φ is a stable matrix
(i.e., Schur matrix).

(a)

(b)

Figure 3: Circuit diagrams: (a) double scroll circuit;
(b) act-and-wait DFC circuit.

3. Control of double-scroll oscillator

The double scroll oscillator [25], as illustrated in Fig.
3(a), is governed by

C1
dv1

dt
=

1
R

(v2 − v1) − h(v1)

C2
dv2

dt
=

1
R

(v1 − v2) + iL + iu

L
diL
dt

= −v2

. (5)

v1 [V], v2 [V], and iL [A] denote the voltage across C1

[F], C2 [F], and the current through L [H], respectively.
Current h(v1) [A] flows through the nonlinear resistor:

h(v) := m0v+
1
2
(m1−m0) |v + Bp|+

1
2
(m0−m1) |v − Bp| .

iu [A] denotes the control current from the controller
to the oscillator. Figure 3(b) sketches the circuit dia-
gram of act-and-wait DFC. The voltage v2 is applied
to PIC (PIC18F2550) device; this device generates the
delay digitized signal. The digital to analog converter
(DA) using R/2R resistor network transforms the dig-
itized signal into the delayed voltage v2,τ := v2(t− τ).
SW is implemented by the analog switch (4066): the
switching period T [s] and the waiting period tw [s].
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Figure 4: Stability regions in k0-τ plane: red and blue
regions are numerically estimated by |λmax(Φ)| < 1;
The symbol ◦ denotes the parameter set (k0, τ) where
the stabilization is experimentally observed: (a) origi-
nal DFC method, (b) act-and-wait DFC method. Ver-
tical axis: τ [ms].

The current iu during the active period T − tw is de-
scribed by

iu =
1
r
(v2,τ − v2).

A dimensionless form of oscillator (5) is described
by Eq. (1) with

f(x) :=

α {x2 − x1 − g(x1)}
x1 − x2 + x3

−βx2

 , b :=

0
1
0

 , c :=

0
1
0

T

,

where the dimensionless time t/(RC2) is used instead
of the real time t. The state variables, the parameters,
and the nonlinear function are rewritten as

x1 := v1/Bp, x2 := v2/Bp, x3 := iLR/Bp,

a := m1R, b := m0R, α := C2/C1, β := R2C2/L,

g(x) := bx + (b − a) {|x − 1| − |x + 1|} /2.

The oscillator without control (i.e., u ≡ 0) has three
fixed points: x∗

± :=
[
±p 0 ∓p

]T and x∗
0 := 0,

(a)

(b)

Figure 5: Time series data of the circuit voltages v1,2:
(a) point A (k0 = 1.5 and τ = 1.80 [ms]) and (b) point
B (k0 = 1.7 and τ = 3.24 [ms]) in Fig. 4(b). Horizon-
tal axis: t (5 ms/div); vertical axis: v1 (2 V/div) and
v2 (1 V/div).

where p := (b − a)/(b + 1). The present paper focuses
on the stabilization of x∗

+ below2.

The dynamics of oscillator (1) with controller (2)
around x∗

+ is described by Eq. (4), where

A =

−α(b + 1) α 0
1 −1 1
0 −β 0

 , k0 =
R

r
.

The dimensionless periods, T/(RC2) and tw/(RC2),
are used in controller (2) instead of the real time pe-
riods, T and tw.

2It should be noted that the same results are obtained for
x∗
−.
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Here, the parameters are fixed at

C1 = 0.01 × 10−6F, C2 = 0.1 × 10−6F,

L = 18 × 10−3H, Bp = 1.0V, R = 1800Ω,

T = 4.48 × 10−3s, tw = 3.58 × 10−3s,
m0 = −0.4 × 10−3, m1 = −0.8 × 10−3,

where the double scroll attractor exists in oscillator
(1) without control. The stability regions in k0 − τ
plane on our numerical estimation and circuit experi-
ments for the original DFC method and the act-and-
wait DFC method are shown in Figs. 4(a) and 4(b),
respectively. It can be seen that the long-time delay
can be used for the act-and-wait DFC method com-
pared with the original one and the numerical estima-
tion roughly agrees with the circuit experiment.

The time series data of the oscillator controlled by
the act-and-wait DFC is shown in Fig. 5(a). The
control current with (k0, τ) corresponding to point A
in Fig. 4(b) starts to flow into the circuit at time
t = 5 ms. The act-and-wait controller experimentally
fails to stabilize the fixed point. On the other hand,
as shown in Fig. 5(b), the controller corresponding to
point B succeeds in stabilizing the fixed point.

4. Conclusion

This paper provided the experimental verification
of the act-and-wait DFC method. The act-and-wait
controller was mainly implemented by the PIC device.
The UFPs in the double-scroll circuit were experimen-
tally stabilized by the controller. The stability regions
on the numerical estimation roughly agree with those
on the circuit experiments.
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