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Abstract—In the previous study, we have started to ana-
lyze the nonlinear phenomena in the current-controlled full
bridge inverter under a practical circuit parameter using
which the ac waveform of 60Hz is generated. However,
the detail analysis of the circuit is insufficient. In this pa-
per, we analyze the dynamic behavior of the circuit in more
detail. First, we show the circuit model and the waveform
behavior. Then, we define the discrete map of the fast- and
slow-scale dynamics, respectively. Finally, we investigate
the relationship between the fast- and slow-scale dynamics.

1. Introduction

Power converter circuits are used in many electrical
equipment. Therefore, proposing the new circuit model,
studying the circuit theory, improving the power conver-
sion efficiency, etc. are important. Some of the power
converter circuits have the switching devices and it causes
the nonlinear phenomena. Analyzing the nonlinear phe-
nomena in the power converter circuits can contribute to
developing the circuit theory and be a help for understand-
ing the dynamic behavior of the circuit in a wide param-
eter space. Therefore, there are many papers which study
the nonlinear phenomena in the power converter circuits
since 1990s [1, 2]. In recent years, it can be said that the
nonlinear phenomena in the power converter circuits with
low-dimensional topology are analyzed in detail [3, 4].
However, analyzing the nonlinear phenomena in the power
converter circuits with high-dimensional topology or with
complicated dynamics are insufficient.

This paper focuses on the current-controlled full bridge
inverter. The circuit structure of the full bridge inverter is
simple. However, the carrier signal and the reference sinu-
soidal signal, which is used for controlling the switching
action, make the circuit dynamics complicated. In general,
the waveform behavior observed in the time interval corre-
sponding to the carrier signal is called as the fast-scale dy-
namics [5], whereas that of corresponding to the sinusoidal
signal is called as the slow-scale dynamics [6]. Nonlinear
phenomena observed in the fast- and slow-scale dynamics
have been investigated in the previous study [7]. The pre-
vious studies analyzed the circuit with two or more dimen-
sional topology. Therefore, for clarifying the basic prop-
erty of the nonlinear phenomena observed in the fast- and

slow-scale dynamics in detail, we have started to analyze
the simple interrupted electric circuit in Refs. [8, 9, 10, 11].
In particular, Refs. [10, 11] analyzed the full bridge in-
verter with one dimensional topology. However, the cir-
cuit parameters was not practical in Ref. [10]. Although
Ref. [11] improved the circuit parameter and analyzed the
nonlinear phenomena observed in the fast- and slow-scale
dynamics separately, the relationship between the fast- and
slow-scale dynamics is not discussed.

In this paper, we deal with the relationship between the
fast- and slow-scale dynamics in the full bridge inverter.
First, we show the current-controlled full bridge inverter
with one dimensional topology. Then, we explain the
waveform behavior. Next, we define the discrete map of
the fast- and slow-scale dynamics, respectively. Finally, we
discuss the relationship between the fast- and slow-scale
dynamics.

2. Current-controlled full bridge inverter

Figure 1 shows the circuit model, which is proposed in
Ref. [12]. We have studied the nonlinear phenomena in
the circuit in Ref. [13]. Moreover, we have improved the
controller as shown in Fig. 2 in Ref. [10]. The nonlinear
phenomena in the improved circuit were studied in Ref.
[11].

In the following analysis, we shows circuit dynamics
based on Ref. [11]. The circuit parameters are fixed as
E = 50[V], L = 1[mH] and R = 4.8[Ω]. The circuit
has four switches, where switch-1 (SW1) and switch-4
(SW4) being a pair. Likewise, switch-2 (SW2) and switch-
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Figure 1: Full bridge inverter.
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3 (SW3) being a pair. If SW1 (SW4) is ON and SW2
(SW3) is OFF, we call it as state-A, otherwise we call it
as state-B. The switching signal un is as follows:

un = k
(

Vs
ref(nTf) − in

)

, (1)

where k is a gain of the controller, V s
ref(nTf) and in denote

the sampling data of the carrier signal and the inductance
current at a time of t = nTf . Note that n = 0, 1, 2, 3, . . .,
and Tf denotes a period of the carrier signal, where T f =

83.3[µs]. Moreover, we use the following dimensionless
variables.

i =
E
R

x, t =
2L
R
τ, Tf =

2L
R

T ′f , Ts =
2L
R

T ′s (2)

Therefore, the circuit equation is derived as follows:

dx
dτ
=



















−2(x − 1), forstate − A

−2(x + 1), forstate − B
. (3)

Note that Ts = NTf denotes the period of the reference si-
nusoidal signal, where N = 200. In the following analysis,
we rewrite the variables T ′f and T ′s with Tf and Ts, for the
sake of the simplicity. Therefore, the solution of Eq. (3) is
derived as follows:

x(τ) =



















ϕa (τ, xn, λ) , forstate − A

ϕb (τ, xn, λ) , forstate − B
, (4)

where λ denotes a parameter. Note that xn denotes an initial
value of the inductance current at a time of τ = nT f, where
n = 0, 1, 2, 3, . . . ,N − 1. Figure 3 shows the waveform
behavior, where (a) shows a long time scale view, which
we call the slow-scale dynamics and (b) shows a short time
scale view, which we call the fast-scale dynamics. Note
that the switching signals are shown in Fig. 3 (b). Here,
let the minimum value of the carrier signal be 0, whereas
maximum value of that is VU. The circuit keeps state-B dur-
ing a time that satisfies un ≤ V f

ref(τ), otherwise the circuit
keeps state-A. Therefore, the discrete map of the fast-scale
dynamics is defined as follows:

xn+1 = Fn(xn)

=



























fi = ϕa (Tf , xn, λ) , un ≥ VU

fii = ϕb (Tf , xn, λ) , un ≤ 0

fiii = ϕb (τb, x(τa), λ) ◦ ϕa (τa, xn, λ) , 0 < un < VU

,

(5)

+
-
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Figure 2: Control block.

where τa and τb denote a time during which the circuit
keeps state-A and state-B, respectively. Likewise, the dis-
crete map of the slow-scale dynamics is defined as follows:

xp+1 = G(xp)

= FN−1 ◦ · · · ◦ F1 ◦ F0(xp)

= FN−1 ◦ · · · ◦ F1 ◦ F0(x0)

. (6)

Note that xp denotes an initial value of the inductance cur-
rent at a time of τ = pTf with n = 0, where p = 1, 2, 3, . . ..

3. Analytical results

Figure 4 shows the waveform behaviors by changing
the parameter k, which is the gain of the controller. It is
clear that a bifurcation phenomenon occurs in the circuit
by changing the parameter k. For example, a periodic so-
lution can be observed at k = 3.0, while the non-periodic
solutions are observed in the other parameter values of k. In
the following analysis, we consider the bifurcation mecha-
nism.

The stability of the fast-scale and slow-scale dynamics
can be calculated based on the following equations:

dFn(xn)
dxn

− µf = 0, (7)

dG(xp)
dxp

− µs = 0, (8)

where µf and µs denote the characteristic multipliers of
the fast- and slow-scale dynamics, respectively. Note that
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Figure 3: Waveform behavior.
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Figure 4: Waveforms in the slow-scale dynamics.

dG(xp)/dxp is derived as follows:

dG(xp)
dxp

=
dxp+1

dxp

=
dFN−1

dxN−1
· · ·

dF1

dx1

dF0(xp)
dxp

,

=
dFN−1

dxN−1
· · ·

dF1

dx1

dF0(x0)
dx0

(9)

If |µf | < 1 is satisfied, we regard that the fast-scale dynam-
ics is approximately stable. Likewise, it is said that the
slow-scale dynamics is stable if |µs| < 1 is satisfied.

Table 1 shows the stability calculation results with T f =

0.2. In the table, µM
f denotes the maximum value of the

characteristic multiplier in the fast-scale dynamics within
the one cycle of the slow-scale dynamics. It is clear that
both the fast-scale dynamics and the slow-scale dynamics
keep stable state at k = 4.311 and k = 4.312. On the other
hand, a part of the fast-scale dynamics becomes unstable
at k = 4.313 because

∣

∣

∣µM
f

∣

∣

∣ > 1 is satisfied. The slow-scale
dynamics becomes unstable at k = 6.64. Therefore, it can
be concluded that a part of the fast-scale dynamics becomes
unstable, however, the slow-scale dynamics keeps stable
oscillation during 4.313 ≤ k ≤ 6.63. More complicated
nonlinear phenomena may occurs during 4.313 ≤ k ≤ 6.63.

4. Conclusion

This paper analyzed the nonlinear phenomena in the
current-controlled full bridge inverter under a practical cir-
cuit parameter using which the ac waveform of 60Hz can

be generated. First, the full bridge inverter was shown.
Then, the control block was formed by using 12kHz of the
sampling data of the carrier signal and the inductance cur-
rent. The switching devices were controlled by output of
the control block. Next, the discrete map of the fast- and
slow-scale dynamics were defined. Finally, nonlinear phe-
nomena in the circuit were shown by changing the param-
eter value of k, which is a gain of the controller. More-
over, stabilities of the fast- and slow-scale dynamics were
calculated by using the discrete map. Based on the sta-
bility calculation results, the relationship between the fast-
and slow-scale dynamics was discussed. It was found that
the fast-scale dynamics became unstable and then the slow-
scale dynamics became unstable by changing the bifurca-
tion parameter of k. This characteristic may be the same
with all of the current-controlled full bridge inverter. We
consider that more interesting nonlinear phenomena can be
observed in the parameter range in which a part of the fast-
scale dynamics becomes unstable, whereas the slow-scale
dynamics keeps stable oscillation.

In future, we will focus on the above parameter range
and clarify the relationship between the fast- and slow-
scale dynamics. Moreover, we will report the dynamical
mechanism of the appearance of the harmonic distortion
in the full inverter. The experimental investigation is also
included in the future work.
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Table 1: Stability calculation results (Tf = 0.2)

k µs µM
f Remarks

4.31100 0.00000 -0.99960 Stable fast-scale dynamics and stable slow-scale dynamics
4.31200 0.00000 -0.99999 Stable fast-scale dynamics and stable slow-scale dynamics
4.31300 0.00000 -1.00039 Unstable fast-scale dynamics and stable slow-scale dynamics
4.31500 0.00000 -1.00119 Unstable fast-scale dynamics and stable slow-scale dynamics
· · · ·

5.00000 0.00953 -1.27406 Unstable fast-scale dynamics and stable slow-scale dynamics
5.01000 0.01877 -1.27804 Unstable fast-scale dynamics and stable slow-scale dynamics
5.01068 0.01966 -1.27832 Unstable fast-scale dynamics and stable slow-scale dynamics
5.01100 0.02008 -1.27844 Unstable fast-scale dynamics and stable slow-scale dynamics
5.03000 0.07229 -1.28601 Unstable fast-scale dynamics and stable slow-scale dynamics
5.05000 0.27590 -1.29399 Unstable fast-scale dynamics and stable slow-scale dynamics
5.06000 0.53717 -1.29797 Unstable fast-scale dynamics and stable slow-scale dynamics
5.08000 0.02132 -1.35537 Unstable fast-scale dynamics and stable slow-scale dynamics
5.09000 -0.00443 -1.36055 Unstable fast-scale dynamics and stable slow-scale dynamics
· · · ·

6.60000 -0.89972 -1.96539 Unstable fast-scale dynamics and stable slow-scale dynamics
6.62000 0.83537 -1.97034 Unstable fast-scale dynamics and stable slow-scale dynamics
6.63000 -0.96308 -1.95823 Unstable fast-scale dynamics and stable slow-scale dynamics
6.64000 -2.13303 -1.97459 Unstable fast-scale dynamics and unstable slow-scale dynamics
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