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Abstract—Frequency components of the propagating
pulse wave observed in 6 coupled bistable oscillators are
investigated. It is demonstrated that the propagating pulse
wave shows a multimode oscillation. These frequency
components are clearly changed, as the degree of nonlin-
earity becomes weak. For weak nonlinear case, the spec-
trum of the solution shows four dominant peaks, which at-
tracts controversy based on the past theoretical works.

1. Introduction

It is frequently observed in various fields that coupled
multiple elements which have autonomous dynamics be-
come to have a valuable function as a unit. Propagating
wave phenomenon, which may be utilized modeling of bi-
ological information processing[1], corresponds to one of
them. Various propagating wave phenomena in several sys-
tems such as chaotic pulse, propagation of phase states, etc.
have been investigated and have attracted constant interest
in various areas[2, 3].

In our previous work, we demonstrated that there exists
the propagating pulse wave in an inductor-coupled bistable
oscillator array even in a practical setting[4]. The propa-
gating pulse wave consists of several adjacent oscillators
oscillating with large amplitude, and the part of large am-
plitude oscillation in the array propagates with a constant
speed.

In the meanwhile, to provide a theoretical framework
for understanding this system, the analysis of oscillation
modes based on the averaging method or the perturbation
method for weakly nonlinear case were extensively per-
formed in [5, 6]. One of the notable results is an out-
of-phase synchronization of envelopes (the synchronized
multimode waves)[6]. This solution can be considered as
a kind of propagating wave phenomena, and seems to be
similar to the propagating pulse wave in our case. In or-
der to make understanding of the propagating pulse wave
forward, the differences between the results in our case and
the similar solution should be appreciated.

The propagating pulse wave shows an almost periodic
oscillation. In order to demonstrate the property, it is nec-
essary to investigate the dominant oscillation frequencies.

In addition, because the dominant frequency of the solution
in [6] agrees well with the theoretical value, we can draw a
comparison between two solutions for weak nonlinearity.
In this paper, we investigate spectral property of the
propagating pulse wave observed in 6 coupled bistable os-
cillators. Firstly, we show that how frequency components
of the propagating pulse wave are included for strong non-
linear case. Then, we pay attention to how its frequency
components are changed as the degree of nonlinearity be-
comes weak. In addition, we compare the results with the
similar solution, and discuss the differences between them.

2. Fundamental equation

The system equation of a ring of inductor-coupled
bistable oscillators can be written in the following with ref-
erence to [4] :

X=y
y = —e(1-pxc + xp)y - Kyx (1)
(- =d/dn),
Wherex = [x19-x2""axN]T’y = [y13y2""’yN]T’
Xc = [X%, .X%,' ”’-sz\]]T’ Xf = [x?,x;,~ "xi]]T7 and
l+a -« -«
- l+a -«
KN= 0 ,
0 o —a
-a - l+a

N is the number of oscillators. The x;,i = 1,2,---,N de-
notes the normalized output voltage of the i-th oscillator,
y; denotes its derivative. The parameter & (> 0) shows the
degree of nonlinearity. The parameter (0 £ @ £ 1) is
a coupling factor; namely @ = 1 means maximum cou-
pling, and @ = 0 means no coupling. The parameter
controls amplitude of oscillation. Each isolated oscillator
has two steady-states, namely, no oscillation and periodic
oscillation depending on the initial condition. Hereafter,
we investigate spectral property for N = 6 case, and the
parameter S is fixed to 3.2 for simplicity.
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Figure 1: A typical propagating pulse wave for strong non-
linear case. Time waveforms (the associated upper en-
velopes) are indicated with green (red) curves. The initial
condition is given as x; = 2.0,y, = 1.3 and all other vari-
ables are zero. (¢ = 0.36,a = 0.1 and 8 = 3.2)

3. Propagating pulse wave and its frequency compo-
nents

There exists the propagating pulse wave in the system
(1). In the following, we review the solution for strong
nonlinear case, and then we investigate its spectral prop-
erty as a first step. Next, frequency component variations
with respect to the degree of nonlinearity is investigated.
Then, we will discuss the results based on the perturbation
method, and compare with the similar solution for weak
nonlinear case.
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Figure 2: The power spectrum of x; in Fig.1.
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3.1. Strong nonlinear case

A typical propagating pulse wave for £ = 0.36 and
a = 0.1 is depicted in Fig.1'. It is clear that the part of
large amplitude oscillation in the array propagates with a
constant speed. It should be noted that the solution shows
an almost periodic oscillation. The corresponding enve-
lope appears in the form of almost periodic oscillation as a
corollary.

To detect the dominant component frequencies of x;,
i =1,2,---,6, Fast-Fourier Transform (FFT) is applied.
The power spectrum of x; associated with the propagating
pulse wave in Fig.1 is illustrated in Fig.2”. The solution has
several dominant peaks, namely this is a multimode oscilla-
tion. In the following section, variations of these frequency
components with decreasing & are investigated.

3.2. Variations with the degree of nonlinearity

The propagating pulse wave appears via some kind of
global bifurcation[7]. The bifurcation occurs at the point
around the pitch-fork(PF) bifurcation point (apr) of a cer-
tain kind of periodic solution. Figure 3 shows a PF bi-
furcation set of the periodic solution in the &£ — @ plane.
In neighborhood of the right side of the bifurcation set,
the propagating pulse wave appears. That is, at least for
0.01 = & £ 0.36, there exists the propagating pulse wave
near the bifurcation set, which can be seen by direct com-
puter simulation of Eq.(1).

It is depicted in Fig.4 that the frequency components of
the propagating pulse wave are changed with the value of €.
The dominant frequency components are indicated by the
sharp line. As an example, Fig.2 shows nearly comparable
result for & = 0.36%. It should be noted that all dominant
frequency components approach to w = 1.0 rad/sec, as €
becomes small.

! All numerical integrations are carried out by 4th order Runge-Kutta
method with a step size of 0.01.

ZPower spectra in this paper are obtained from 22! sampling points
with 48uHz resolution.

3To be exact, there is a slight difference with the value of . a = 0.1
in Fig.2, and @ = 0.101577 in Fig.4 for € = 0.36. The reason is found in
the caption in Fig.4.
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Figure 3: Pitch-fork bifurcation set in the € — @ plane of
the periodic solutions obtained from the initial condition
x; = 2.0,i = 1,---,6 and all other state variables being
Zero.
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Figure 4: Variations of frequency components of the prop-
agating pulse wave in terms of &. @ is set to 1.15 X a@pp so
that the solution can exist. The brighter part indicates the
stronger frequency component.

3.3. Weak nonlinear case

According to [6], the multimode (M modes, M= 1,2,---)
waves can occur for weak nonlinear case. These stabilities
entirely depend on the values of M and 8 (—g3 in the liter-
ature). For 8 = 3.2, the stabilities of M modes oscillations
are calculated in Table 1 referring to the literature, where
r?m (i,m = 1,---,M) correspond to the approximates of
sfationary amplitudes of equilibrium point in the perturba-
tion method, and the corresponding eigenvalues decide the
stability of each equilibrium point. It should be noted that
it is indicated that the solutions for M= 1,2 (with the bold
strokes in Table.1) exists stably. On the other hand, there
is no solution which is stable in this case for 3 £ M £ 100
(we only show the results up to M = 5 because of space
limitations).

In [6], the quasi-periodic oscillations are investigated,
some of which (especially for M = 2) have very interesting
synchronous property on envelope of each time waveform.
Then, we investigate what kind of multimode oscillation
(almost periodic oscillation) is resulted when & becomes
small enough so that the perturbation method is effective.
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Figure 5: The envelopes of x; fori = 1,-- -, 6 of the propa-
gating pulse wave obtained from the same initial condition
in Fig.1 for £ = 0.01,@ = 0.01 and 8 = 3.2.

Figure 5 shows an upper envelopes (env (x;)> 0) of
the time waveforms of x;, i = 1,---,6 for & = 0.01 and
a = 0.01. Being different from [6], the shape of these en-
velopes are different, and simple phase synchronization of
them cannot be recognized. That is, the envelopes appears
in the form of almost periodic oscillation similarly to them
for strong nonlinear case. The power spectrum of x; for
this case is depicted in Fig.6. The spectrum shows four
dominant peaks, therefore, this is a four-fold multimode
oscillation.

Interestingly, the dominant peaks are nearly equal to an-
gular frequencies of resonance modes (w;, i = 1,---,N)
with € = 0 in Eq.(1). w; can be explicitly expressed by
the square root of the eigenvalues of Ky in Eq.(1) in the
following[6].

2n(i— 1
w,~=\/1+a—20zcosM 2)
N
Then, the number of different modes becomes 1 + [N/2]
([-] is Gauss’s symbol). Therefore, for N = 6 there are
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Figure 6: Power spectrum of the same solution in Fig.5.
In addition, w;, wr(= we), w3(= ws) and w4 in Eq.(2) are
shown.

Table 1: Equilibrium points and their stabilities for § =
3.2 obtained by the perturbation method[6]. The bracketed
number indicates the multiplicity of eigenvalues.

M Equilibrium points Eigenvalues
| rY =1.305 0.637
r‘l’ =2.167 -1.757
r=7r9=0.782 0.533,-0.302
2 r‘l) = rg =1.144 -0.191, -1.141
P =1.673,r9 =0.632 0.287, -1.407
3| =1.57519 =0424 | 0221 (2),-1.112
4 | r?=1.550,r5 =0.338 | 0.192(3),-1.124
5| Y=1539,r) =0.288 | 0.174 (4), -1.186

four different angular frequencies (w1, w», w3 and wy). For
a = 0.01 these values are shown in Fig.6, which correspond
to the four dominant frequencies of the propagating pulse
wave for £ = 0.01. The result may suggest that theoretical
analysis can be applied to this kind of propagating wave.

4. Conclusions

It is demonstrated that the propagating pulse wave shows
the multimode oscillation. These frequency components
approach to 1.0 rad/sec, as the degree of nonlinearity be-
comes weak. For weak nonlinear case, the spectrum of the
solution shows four dominant peaks. In this meaning, this
is a different type of multimode oscillation (especially for
M = 2) from those in [6]. In while, the dominant peaks
agree with w; in Eq.(2), which is remained to be investi-
gated in detail in the future.
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