
Complex Time Homotopy for Finding Periodic Oscillations

Takashi Hisakado† and Atsushi Koyama†

†Department of Electrical Engineering, Kyoto University
Kyotodaigakukatsura Nishikyo-ku, Kyoto 615-8510, Japan

email: hisakado@kuee.kyoto-u.ac.jp

Abstract—This paper proposes to extend the time vari-
able of circuit equations to the complex number field for
finding out periodic oscillations in global parameter space.
The extension reveals the reason why the homotopy path
of complex state variables breaks. Further, the singularities
on the complex time plane lead to the classification of the
periodic oscillation. The classification enables to search for
real solutions efficiently.

1. Introduction

In nonlinear circuit analysis, it is important to find out
circuit parameters on which target oscillations are gener-
ated. Once we find out the parameters, we can apply effi-
cient tools, e.g., homotopy method which have global con-
vergence [1] and interval method which enables to calcu-
late all solutions of nonlinear equations [2, 3, 4]. However,
in order to find out the circuit parameters, we have no effi-
cient tools, i.e., we have to solve determining equations of
the target oscillations a number of times in global parame-
ter spaces through a trial and error process.

Recently, in order to systematically find out circuit pa-
rameters of periodic oscillations, homotopy with complex
state variables has been proposed [5]. The complex state
variables enable to find out the complex periodic solutions
at any circuit parameters even if the real solution does not
exist. Further, the analyticity of the complex function rep-
resented by Cauchy-Riemann equations derives the mono-
tonic homotopy path with respect to the homotopy parame-
ters [1]. Using the monotonicity of general homotopy path,
we can systematically find out real periodic solutions in the
global parameter spaces.

Although the homotopy with the complex state variables
is a vital tool for the systematic search, the homotopy path
breaks in some cases. This paper reveals the reason why the
homotopy path breaks by extending the time variable to the
complex number field. Then, the complex time homotopy
leads to classification of the periodic oscillations and we
propose to use the classification for efficiently finding out
real periodic solutions.

In section 2, we review the method in [5] and show an ex-
ample of the break of the homotopy path. In section 3, we
introduce the complex time variable for the circuit equation
and reveal that movable singularities on the complex time
plane break the homotopy path. In section 4, we propose
to classify the oscillations using the movable singularity.

In section 5, we show that the classification is efficient for
the systematical search for real periodic oscillations in the
global parameter spaces.

2. Homotopy with Complex State Variable

2.1. Determining equation of periodic oscillation

First, we review the method for finding periodic oscilla-
tions using the homotopy with the complex state variables
[5]. We consider the following scaled real circuit equation;

dx
dt
= f (x) + e(t) (1)

where x = (x1, . . . , xn)′ ∈ Rn is a real vector of state vari-
ables and the prime means transpose, and f (x) : Rn �→ Rn.
The vector e(t) ∈ Rn corresponds to AC sources of period
2π:

e(t + 2π) = e(t). (2)

By extending the real state variables to the complex number
field, the Eq.(1) is redefined by

dz
dt
= f (z) + e(t). (3)

where z ∈ Cn and we assume that f (z) : Cn �→ Cn is
analytic. The time t, the source e(t) and the coefficients of
the polynomials are still in real number field.

We derive the determining equation of the periodic solu-
tion of Eq.(3) by shooting method [6]. The integration of
Eq.(3) from an initial value z(0) = z0 gives

z(t) = z0 +

∫ t

0
f (z) + e(s)ds. (4)

A problem of finding a periodic solution of period T ∈ R
is a two-point boundary value problem in which the solu-
tion of Eq.(3) in the interval [0, T ] must satisfy the bound-
ary condition z(0) = z(T ). Assuming that we can integrate
Eq.(3) from t = 0 to t = T , we express the above problem
using a mapping T : Cn �→ Cn,

z0 = T(z0), T(z0) ≡
∫ T

0
f (z) + e(s)ds + z0. (5)

Thus, the determining equation of the periodic oscillation
is defined by

F(z0) ≡ z0 − T(z0) = 0. (6)
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2.2. Algorithm for finding out periodic solutions

In order to solve the Eq.(6), we apply Newton homotopy
which has more global convergence than Newton method
[1]. The analyticy of Eq.(6) makes the homotopy path
monotonic with respect to the homotopy parameter [5] and
we obtain the complex periodic solutions of Eq.(6). From
the complex periodic solutions, we search for real peri-
odic solutions using the general homotopy which also has
monotonic paths with respect to the homotopy parameter
[5]. The monotonicity enables the systematic search for
the real periodic solutions in the global parameter space.
The algorithm for finding out real periodic solutions are
summarized by the following procedure:

Step 1: We fix circuit parameters.

Step 2: We give enough initial vectors â and find all or
almost all complex periodic solutions of Eq.(6) using
the Newton homotopy.

Step 3: We find out real periodic solutions of Eq.(6) from
the complex solutions obtained in Step 2 using the
general homotopy. The monotonicity of the general
homotopy enables to search for the real solutions in
the global parameter space.

If we obtain enough solutions in the Step 2, we do not need
to execute the Newton homotopy for other values of the
circuit parameters.

2.3. Break of homotopy path

Although the algorithm gives the systematic search by
the monotonic homotopy path, the homotopy path breaks in
some cases. For example, let us consider a RLC resonance
circuit shown in Fig.1. The scaled circuit equation is

dz1

dt
= −z2 − ζI(z1) + E sin(t)

dz2

dt
= ηI(z1), (7)

where z1 and z2 correspond to the flux interlinkage of in-
ductor and the capacitor voltage respectively, and ζ and
η correspond to resistance and capacitive susceptance re-
spectively. The magnetizing characteristics of nonlinear
inductor is approximated by I(Ψ) = Ψ3. At the first step
of the algorithm, we give a set of circuit parameters by
(E, ξ, η) = (0.5, 0.15, 0.4). Second, we apply the New-
ton homotopy to Eq.(6) and obtain 5 solutions S 0, . . ., S4.
Third, we apply the general homotopy from the 5 solutions
and obtain the homotopy paths shown in Fig.2. The figure
shows the real part of z1(0) and the real solutions are de-
noted by solid line. The branch AB which is traced from
S1 is broken at the point B. The waveform on B is shown in
Fig.3. The impulse-like waveform indicates that a movable
singularity of Eq.(7) breaks the homotopy path. In order to
confirm the fact, we extend the time variables to the com-
plex number field.
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Figure 1: RLC resonance circuit with nonlinear inductor

Figure 2: Homotopy paths traced from S0, . . .S4.
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Figure 3: Periodic solution on the break point B

3. Waveform on Complex Time Plane

We extend the time variable of the circuit equation (3) to
the complex number field as

dz
dτ
= f (z) + e(τ), (8)

where τ ∈ C. This extension gives the freedom of integra-
tion path on the complex time plane and we redefine the
integration (4) by

z(t) = z0 +

∫
γ

f (z) + e(s)ds, (9)

- 606 -



where γ denotes the integration path. We redefine the map-
ping T(z0) in Eq.(5) by the integration path from τ = 0+ 0i
to τ = T + 0i on the complex time plane where i denotes√−1. The value z(T ) depends on the relative position of the
integration path and movable singularities on the complex
time plane. Figure 4 shows the case that two integration
paths γ(1) and γ(2) gives different z(T ). That is, If there ex-
ists movable singularity in the closed contour γ (1) and γ(2),
the values z(T ) by γ(1) and γ(2) are different in general [7].

In order to confirm the existence of the singularity for the
waveform in Fig.3, we calculate the waveform z(τ) on the
complex time plane shown in Fig.5. The figure indicates
that the impulses on the complex time plane are movable
branch points of z(τ) [7].

Figure 6 illustrates the mechanism of the break of the
homotopy path. When we are tracing the general homotopy
path, if a movable branch point crosses the real axis on the
complex time plane, the z(T ) for the real integration paths
jumps to the different point on the Riemann surface of z(τ)
and the homotopy path is broken.
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Figure 4: Example of two integration path on τ-plane.
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Figure 5: Waveform on complex-time

4. Classifying Periodic Oscillations by Singularity

We classify the periodic oscillations using the movable
branch point. Let us consider two paths γ (0) and γ(1) from
τ = 0+0i to τ = T +0i. If there exist no singularities in the
closed contour γ(0) and γ(1), we call that the paths γ(0) and
γ(1) are homotope with respect to one another. Then, the
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Figure 6: Mechanism of the homotopy path broken by the
movable branch point. When we are tracing the general
homotopy path, if a movable branch point crosses the real
axis on the complex time plane, the z(T ) for the real inte-
gration paths jumps to the different point on the Riemann
surface and the homotopy path is broken.

equivalent relations with respect to the homotope leads to
the classification of the paths. For example, the paths γ (0)

and γ(1) in Fig. 4 belong to different classes each other.
Let us classify the solution z(τ) of Eq.(8) by the concept

of the homotope. We assume that the integration path is
from τ = 0 + 0i to τ = T + 0i. First, if the initial value z(0)
is fixed, the movable branches are fixed and we can clas-
sify the solution of Eq.(8) by the concept of the homotope.
That is, we classify the solution z(τ) by the sheet of the
Riemann surface of z(τ). Figure 7 shows the classification
of solutions z(0)(τ), z(1)(τ) and z(2)(τ). The class of z(1)(τ) is
different from that of z(0)(τ) and the class of z(2)(τ) is equal
to that of z(0)(τ).

Next, we consider the case of different initial values
z(0)(0) and z(1)(0). Although the branch points of z (1)(τ) are
different from those of z(0)(τ), we can identify the sheet by
continuous deformation of the solution. That is, introduc-
ing a real parameter λ ∈ [0, 1], we connect the two initial
values by

z(0; λ) = λz(0)(0) − (1 − λ)z(1)(0). (10)

We vary the initial value z(0; λ) from z (1)(0) to z(0)(0) by
varying λ from 0 to 1. The waveform z(τ; λ) is calcu-
lated on the integration path which is continuously changed
as the movable branch points do not cross the path. If
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Figure 7: Classification of z(τ) by the sheet of Riemann
surface.

z(T ; 1) = z(0)(T ) = z(0; 1) is satisfied at λ = 1, the two
solutions belong to the same class.

Figure 8 shows the test for the classification of S0 and S1

in Fig.2. Because z(2π; 1) = z(0; 1) is satisfied at λ = 1,
the two solutions belong to the same class. Figure 9 is the
test for S0 and S2 and we can confirm that the class of S2 is
different from that of S0 by z(2π; 1) � z(0; 1).
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Figure 8: Test for the classification of the solutions S0 and
S1 in Fig.2. Two solutions belong to the same class
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Figure 9: Test for the classification of S0 and S2. The class
of S2 is different from that of S0.

The classification method can be applied to the solutions
with different circuit parameters by using the continuous
deformation with respect to the circuit parameters. Thus,
at least the solutions on connected homotopy path belong
to the same class. In the case of Fig.2 the branches which
contain S0, S1 and S3 belong to a same class.

5. Limit Search by Classification

Let us consider the real solutions of Eq.(8). We fix the
integration path on the real time axis and consider the con-
tinuous deformation (10) between two real solutions. Be-
cause the real solutions of the circuit equation (8) on the
real time axis represent real physical phenomena in the cir-
cuit, the real solutions have no singularity on the real time
axis. As a result, two real solutions are connected by the
continuous deformation (10) and any real solutions belong
to a unique class.

Using this property of the real solutions, we propose to
extract solutions which have the possibility to reach real so-
lutions before the general homotopy. That is, by testing the
class of the periodic solutions obtained by the Newton ho-
motopy, we can discard solutions which have no possibility
to reach real solutins.

In order to confirm the efficiency, we apply the test
to 1/3-subharmonic solutions of the circuit in Fig.1. At
the first step, we fix the parameter (E, ξ, η)=(1.0,0.05,2.8).
Second, using the Newton method, we obtain 3 real solu-
tions and 43 complex solutions. By testing the class of the
43 complex solutions, we obtain 12 solutions which belong
to the class of real solutions. In this case, the test can de-
crease the candidates for the general homotopy from 43 to
12. Thus, the test is efficient for decreasing the computa-
tional cost of the general homotopy.

6. Conclusion

We extended the time variables of circuit equations to the
complex number field and revealed the break of the homo-
topy path. Then, we proposed to classify the oscillations by
the movable branch point on the complex time plane. Last,
we proposed to use the classification for extracting the so-
lutions for the general homotopy using the fact that all real
solutions belong to a unique class.
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