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Abstract—This paper considers positive invariance
and convergence of trajectories of nonlinear systems via
Rantzer’s density functions. Unlike many of previous re-
sults on density functions, this paper does not assume that
the vector field of the system is continuously differentiable
on the whole state space but admits vector fields that can be
not differentiable in measure-zero subsets. Under mild as-
sumptions, a criterion is proposed to guarantee that a given
open set is positively invariant and almost all of the trajec-
tories starting from the set converge to a relevant equilib-
rium in the set.

1. Introduction

Rantzer’s density function [7] has been receiving a con-
siderable amount of attention as a new methodology to sta-
bility analysis of nonlinear systems. Similarly to the Lya-
punov’s direct method, the existence of a density function
guarantees a stability, namely, that almost all of the tra-
jectories of the system converge to a relevant equilibrium.
A remarkable advantage of density functions lies in com-
puting control inputs with convex formulation [6]. Further
theoretical results on density functions have been shown in
such as [5, 8, 1, 3]. Most of previous results assume that
the vector field of the nonlinear system is continuously dif-
ferentiable. However, control systems often involve a not-
globally-differentiable vector field due to such as saturation
and switching. It is then important to relax the assumption
on differentiability of the vector field. It can be also noted
that in practical systems the vector field is smooth at almost
all points other than on certain surfaces of the state space.

Motivated by these observations, in this paper we con-
sider nonlinear systems whose vector field is Lipschitz con-
tinuous and piecewise smooth. More precisely, we as-
sume that the vector field is C

2 over the state space other
than a closed and measure-zero subset and its second-order
derivatives are locally bounded. In terms of piecewise-C2

density functions, we show a criterion that guarantees that
a given open set S is positively invariant and almost all
trajectories starting from S converge to a relevant equilib-
rium in S. This is a generalization of [4] that considers
piecewise-C2 vector fields with a global setting (i.e., S is
the whole state) and also that of [3] to Lipschitz continuous
and piecewise-C2 vector fields.

Notation. Let R and Z denote real numbers and inte-
gers, respectively. For a subset S ⊂ Rn, S, So, ∂S and
Sc stand for the closure, the interior, the boundary and
the complement of S, respectively. For vectors and matri-
ces, let ‖ · ‖ denote the Euclid and maximal-singular-value
norms, respectively. For x ∈ Rn and r > 0, denote by
B(r; x) and B(r; x) the open and closed ball with cen-
ter x and radius r, respectively. For a subset X of Rn,
B(r; X) =

⋃
{B(r; x) : x ∈ X} and B(r; X) = B(r; X).

Note that B(r; X) is open. For subsets X, Y ⊂ Rn,
dist(X,Y ) = inf{‖x − y‖ : x ∈ X, y ∈ Y }. De-
note by C

k(X, Y ) the set of k-times continuously differen-
tiable functions from X to Y . Denote simply C(X, Y ) =
C0(X, Y ), which is the set of continuous functions. A
proposition P (x) stated on x ∈ Rn holds for almost ev-
ery (a. e.) x ∈ S for a subset S ⊂ Rn if the Lebesgue
measure of the set {x ∈ Rn : P (x) is not true} is zero.

2. Main result

Consider the following nonlinear system:

ẋ = f(x), x ∈ Rn. (1)

We assume in (1) that the origin is an equilibrium (f(0) =
0) and f(x) is Lipschitz continuous and piecewise-C2 on
Rn, where we define piecewise differentiability below:

Definition 1 A function f(x) is piecewise-Ck on an open
set S ⊂ Rn if there exists a closed set Ef ⊂ Rn with
μ(Ef ) = 0 such that f(x) ∈ Ck(S \ Ef ,Rn) and for
every compact subset A ⊂ S all the relevant derivatives
are bounded as:

sup
x∈A\Ef

∥∥∥∥∥ ∂if

∂xj1
1 · · · ∂xjn

n

∥∥∥∥∥ < ∞ (2)

for j1, . . . , jn ≥ 0 such that i := j1+· · ·+jn ∈ {0, . . . , k}.

The Lipschitz continuity guarantees that there exists a
unique solution x(t) to (1) satisfying x(0) = x0 for ev-
ery initial state x0 ∈ Rn locally around t = 0 [2]. Denote
by ϕ(t;x0) the solution x(t) satisfying x(0) = x0.

Definition 2 A set S ⊂ Rn is said to be positively invari-
ant if ϕ(t;x) ∈ S holds for all x ∈ S, t ≥ 0.
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Definition 3 The system (1), which is supposed to have an
equilibrium at the origin, is almost everywhere stable on a
set S if for almost every initial value x ∈ S the trajectory
ϕ(t;x) exists for all t ∈ [0,∞) and converges to the origin
as t → ∞.

The following criterion was shown in the original work
of Rantzer [7] to guarantee almost-everywhere stability on
Rn of nonlinear systems (1) with a C1 vector field in terms
of density functions.

Lemma 1 Suppose that f ∈ C1(Rn \ {0}, Rn) and
‖f‖/‖x‖ is bounded near the origin. Assume that there
exists a nonnegative function ρ ∈ C1(Rn \ {0}, R) for
which fρ/‖x‖ is integrable on {x ∈ Rn : ‖x‖ > 1} and
[∇ · (fρ)](x) > 0 holds for almost all x ∈ Rn. Then the
system (1) is almost everywhere stable.

For a measurable set A ⊂ Rn, denote

μρ(A) =
∫

A

ρ(x)dx. (3)

In Lemma 1, the positivity of ∇ · (fρ) implies the
monotonous increase of μρ(ϕ(t;A)) with respect to t, as
a consequence of the following lemma [7].

Lemma 2 Let M ⊂ Rn be open, A ⊂ M be measur-
able and f ∈ C1(M,Rn), ρ ∈ C1(M,R). Suppose that
ϕ(t;A) is included in M for all t ∈ [0, T ]. Then∫

ϕ(T ;A)

ρ(x)dx −
∫

A

ρ(x)dx

=
∫ T

0

∫
ϕ(t;A)

[∇ · (fρ)](x)dxdt. (4)

This equality, which plays one of the key roles in [7], is
not available because f is not assumed to be continuously
differentiable in (1). However, an alternative inequality is
proved in [4], which will turn out to suffice to prove the
main result of the paper.

Lemma 3 Let U ⊂ Rn be a closed set and let f(x) : x ∈
U → Rn and ρ(x) : x ∈ U → R be bounded functions on
U that are Lipschitz continuous and piecewise-C2 on Uo.
Let E be a closed set such that μ(E) = 0 and f and ρ are
twice continuously differentiable on Uo \ E. Let A ⊂ U
be a Borel set of Rn that has a finite rank1 and assume
ϕ(t;A) ∈ U for all t ∈ [0, T ], where T > 0. Suppose
that ρ(x) ≥ 0 for all x ∈ A and [∇ · (fρ)](x) ≥ 0 for
a. e. x ∈ A \ E. Then∫

ϕ(T ;A)

ρ(x)dx −
∫

A

ρ(x)dx

≥
∫ T

0

∫
ϕ(τ ;A)\E

[∇ · (fρ)](x)dxdτ. (5)

1A Borel set with a finite rank is a set represented as finitely repeated
infinite union or intersection of open or closed sets, i.e., those represented
as Π1

i1
· · ·Πk

ik
Ai1,...,ik

where k is a (finite) positive integer, Πj
ij

stands

for
�∞

ij=1 or
�∞

ij=1 and sets Ai1,...,ik
are open or closed sets.

and hence μρ(ϕ(t;A)) is monotonously increasing for t ∈
[0, T ].

The inequality (5) has been used to prove the main result
(Theorem 1) of [4] that generalizes Lemma 1 to nonlinear
systems (1) whose vector field is Lipschitz continuous and
piecewise-C2 in order to handle almost-everywhere stabil-
ity on the whole state space. Below we further extend The-
orem 1 of [4] and provide a condition under which an open
set S is positively invariant for the system (1) and the non-
linear system (1) is almost everywhere stable on S.

Theorem 1 Consider the nonlinear system (1) whose vec-
tor field f is Lipschitz continuous and piecewise-C2 on Rn.
Let S ⊂ Rn be open set with μ(∂S) = 0 and 0 ∈ S. Sup-
pose that there exists a function ρ(x) : x ∈ S \ {0} → R
such that ρ is Lipschitz continuous and piecewise-C2 on
S \ {0} and satisfies

ρ(x) > 0 ∀x ∈ S \ {0}, (6)

[∇ · (fρ)](x) > 0, a. e. x ∈ S \ E, (7)

lim
x→∂S

ρ(x) = 0, (8)

where E = Ef ∪ Eρ ∪ ∂S ∪ {0} with Eρ being a closed
set such that ρ ∈ C2(S \Eρ) and μ(Eρ) = 0. Then (1◦) S
is positively invariant. Moreover, (2◦) if∫

S\No

(1 + ‖f (x)‖2)ρ(x)dx < ∞ (9)

for some bounded neighborhood of the origin No, then the
system (1), which has an equilibrium at the origin, is almost
everywhere stable on S.

This is also a generalization of [3], which considers
positive invariance via density functions with C1 vector
field, to nonlinear systems with a Lipschitz continuous and
piecewise-C2 vector field. See also [8].

Note that the integrability condition (9) always holds if
S is bounded. Obviously, (1+ ‖f‖2)ρ is integrable also on
S \ N for any neighborhood N of the origin if (9) is true.

Example 1 Let us consider a piecewise linear system:[
ẋ1

ẋ2

]
=

[
−3x1 + 4x2 − 2|x1|
−6x1 − 3x2 + |x2|

]
, (10)

which is Lipschitz continuous and smooth on Ec
f , where

Ef is the union of x1- and x2-axes. It is easy to verify that

ρ(x) = max
{

1
(x2

1 + 0.0707x1x2 + 0.6934x2
2)5

− c, 0
}

satisfies the assumptions of the theorem for any c > 0,
proving positive invariance of S = {x ∈ R2 : x2

1 +
0.0707x1x2 + 0.6934x2

2 < c−5}.
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3. Proof of Theorem 1

First, extend ρ(x) for x ∈ Sc by setting ρ(x) = 0,
x ∈ Sc. Then from (8) ρ(x) is Lipschitz continuous and
piecewise-C2 on Rn\{0} and the non-differentiable points
of ρ are included in Eρ ∪ ∂S, whose Lebesgue measure is
zero. Obviously [∇ · (fρ)](x) = 0 for all x ∈ (S)c.

Next, define{
f̄(x) = f(x)/(1 + ‖f (x)‖2),
ρ̄(x) = (1 + ‖f (x)‖2)ρ(x). (11)

Then f̄ and ρ̄ satisfy all the assumptions so far assumed for
f and ρ, respectively, instead of the integrability condition
(9) but ∫

Rn\No

ρ̄(x)dx < ∞ (12)

Moreover, if we denote by ϕ̄(τ ; x0) the solution of
dy/dτ = f̄(y) with y(0) = x0, the solution ϕ̄(τ ; x) is
defined for all τ ∈ R since f̄ is Lipschitz continuous on
Rn \ {0}. It is easy to see that ϕ̄(τ ; x0) = ϕ(t;x0) if
τ =

∫ t

0
(1 + ‖f (ϕ(s;x0))‖2)ds. Hence the system (1) and

dy/dτ = f̄(y) share the same set of integral curves and the
convergence of one implies that of the other. Thus we can
prove Theorem 1 for f̄ and ρ̄ with the integrability assump-
tion (12). To simplify the notation below we denote (f, ρ)
instead of (f̄ , ρ̄).

(1◦) Since ϕ(t;x) is continuous in t and S is open, if
S is not positively invariant, there exists x ∈ S such that
x1 := ϕ(t1; x) ∈ ∂S for some t1 > 0. Let N be a neigh-
borhood of the origin such that N ⊂ S and x �∈ N . Since
S \N is open, there exists a neighborhood A of x such that
A ⊂ S \ N . Let A1 := ϕ(t1; A) and A1o := A1 ∩ (S)c,
which are open because ϕ(·; ·) is a homeomorphism with
respect to the first variable and (S)c is open. Since A1

is a neighborhood of x1 ∈ ∂S, A1o is not empty. More-
over, Ao = ϕ(−t1; A1o) is also nonempty and open. From
Lemma 3, we have

μρ(Ao) ≤ μρ(ϕ(t1; Ao)) = μρ(A1o) = 0,

which means that for the nonempty open set Ao ⊂ A ⊂ S\
N the integral

∫
Ao

ρ(x)dx = 0. This implies that ρ(x) = 0
for almost all x in the nonempty open set Ao, contradicting
(6). Thus we conclude that S is positively invariant.

(2◦) First, we refer to a lemma shown in [4], which is a
version of Theorem 2 in [7].

Lemma 4 Consider the measure space (Rn,B, μ), where
B stands for the Borel family and μ is a measure. Let P
be an open set with μ(P ) < ∞ and T : Rn → Rn be a
homeomorphism and assume that T is measurable. Sup-
pose that μ(T A) ≥ μ(A) holds for all Gσδ- and Fδσ-sets
A with μ(A) < ∞. Define Z as the set of elements x ∈ P
such that T k(x) ∈ P for infinitely many integers k ≥ 0.
Then μ(T Z) = μ(Z).

To apply Lemma 4, fix r > 0 and define

X = Rn,

P = {x ∈ S : ‖x‖ > r},
Z = {x ∈ P : ‖ϕ(k; x)‖ > r,

for infinitely many integers k ≥ 0},
T (x) = ϕ(1;x),

μ(A) =
∫

A

ρ(x)dx.

Lemma 3 tells that μ(T A) ≥ μ(A) holds for all Borel
sets A with finite rank if μ(A) < ∞, which is equivalent
to dist(A, {0}) > 0. Therefore, from Lemma 4 we have
μ(T Z) = μ(Z), i.e.,

0 =
∫

ϕ(1;Z)

ρ(x)dx −
∫

Z

ρ(x)dx

≥
∫ 1

0

∫
ϕ(τ ;Z)\E

[∇ · (fρ)](x)dxdτ. (13)

Since [∇ · (fρ)](x) > 0 for almost all x ∈ S \ E, (13)
implies μ(S ∩ ϕ(τ ; Z) \ E) = 0 for almost all τ ∈ [0, 1]
and hence μ(S ∩ ϕ(τ ; Z)) = 0 for a. a. τ ∈ [0, 1] since
μ(E) = 0. Moreover, we can also deduce μ(S ∩ Z) = 0
(See the appendix). Hence for almost all x ∈ P there exists
an integer k such that ϕ(j; x) ∈ P i.e., ‖ϕ(j; x)‖ ≤ r for
all j ≥ k. The rest of the proof follows similarly to that of
Theorem 2 in [7]; we also have limj∈Z,j→∞ ‖ϕ(j; x)‖ = 0
since the above discussion is valid for any r > 0. Moreover
limt∈R,t→∞ ‖ϕ(t; x)‖ = 0 holds because ‖f (x)‖/‖x‖ is
bounded near 0 from Lipschitz continuity. Thus the proof
of Theorem 1 is completed.

4. Conclusion

We considered nonlinear systems whose vector filed is
Lipschitz continuous and piecewise-C2 and for such sys-
tems we presented conditions in terms of density functions
under which a set is positively invariant and almost all of
trajectories starting from there converge to the origin. This
result, which is an generalization of [3, 4], allows us to
handle a larger class of nonlinear systems that do not nec-
essarily have a C

1 vector field.
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Appendix

A. Preliminaries

Here we make several preparations for the proof of μ(S∩
Z) = 0, which is shown in Section B.

Definition 4 For a set A ⊂ Rn and positive number r,
define B(r; A) := B(r; Ac)c.

Obviously B(r; A) ⊂ A for any r ≥ 0 since B(r; Ac) ⊃
Ac. Similarly r1 < r2 implies B(r1; A) ⊃ B(r2; A). Since
B(r; Ac) is always open [9], B(r; A) is closed.

Lemma 5 Suppose that ‖f (x)‖ ≤ fmax for all x and h >
fmax. Then B(h|t|;A) ⊂ ϕ(t;A).

Proof. Assume x ∈ Ac. Since ‖f (x)‖ ≤ fmax, it
holds that ‖ϕ(t; x) − x‖ ≤ fmax|t| < h|t|, which im-
plies ϕ(t;x) ∈ B(h|t|;x) ⊂ B(h|t|;Ac). This means
ϕ(t;A)c = ϕ(t;Ac) ⊂ B(h|t|;Ac) and hence ϕ(t;A) ⊃
B(h|t|;Ac)c = B(h|t|;A).

Lemma 6 Suppose that a sequence of monotonously de-
creasing positive numbers ai satisfies limi→∞ ai = 0 and
that A is an open set of Rn. Then

∞⋃
i=1

B(ai; A) = A (14)

Proof. First, let us invoke the following lemma from stan-
dard results on sets [9]:

Lemma 7 Suppose that ai > 0 is monotonously decreas-
ing and satisfy limi→∞ ai = 0 and S ⊂ Rn. Then⋂∞

i=1 B(ai; A) = A.

Proof of Lemma 6. From Lemma 7 and the assumption
that A is open,

⋂∞
i=1 B(ai; Ac) = (Ac) = Ac. There-

fore A =
⋃∞

i=1 B(ai; Ac)c =
⋃∞

i=1 B(ai; A). Thus (14) is
proved.

B. Proof of μ(S ∩ Z) = 0

We have seen μ(S ∩ ϕ(τ ; Z)) = 0 for almost all
τ ∈ [0, 1]. Then there exists a sequence of real numbers
a1, a2, . . . such that

ak ∈ (0, 1/k), μ(S ∩ ϕ(ak; Z)) = 0;

otherwise μ(S∩ϕ(τ ; Z)) > 0 for all τ ∈ [0, 1/k) for some
k, which is a contradiction. Without loss of generality, we
can assume that ak is monotonously decreasing. Let

Zk = B(ak; S) ∩ Z ∩ B(1/k; E)c, k = 1, 2, . . .

Then from Lemmas 6 and 7,

∞⋃
k=1

Zk =
∞⋃

k=1

{
B(ak; S) ∩ Z ∩ B(1/k; E)c

}

=

{ ∞⋃
k=1

B(ak; S)

}
∩ Z ∩

{ ∞⋃
k=1

B(1/k; E)c
}

= S ∩ Z ∩ Ec.

Since ‖f (x)‖ ≤ 1/2 for all x ∈ Rn from (11), ‖x −
ϕ(τ ; x)‖ ≤ |τ |/2. Therefore, if x ∈ Zk ⊂ B(1/k; E)c,
it holds that ϕ(τ ; x) �∈ E for all τ ∈ [−1/k, 1/k], i.e.,
ϕ(τ ; Zk) ∩ E = ∅ for all τ ∈ [−1/k, 1/k]. This allows
us to exploit differentiability of ϕ(t;x) with respect to x:
since ak ∈ (0, 1/k), Lemma 5 yields

0 =
∫

S∩ϕ(ak;Z)

dx ≥
∫

S∩ϕ(ak;Zk)

dx

=
∫

ϕ(−ak;S)∩Zk

det
(

∂ϕ(ak; x)
∂x

)
dx

≥
∫

B(ak;S)∩Zk

det
(

∂ϕ(ak; x)
∂x

)
dx

=
∫

Zk

det
(

∂ϕ(ak; x)
∂x

)
dx ≥ 0,

which implies μ(Zk) = 0. Lastly

μ(S ∩ Z) = μ(S ∩ Z ∩ Ec) + μ(S ∩ Z ∩ E)

≤
∞∑

i=1

μ(Zk) = 0.
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