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Abstract— We proposed the Inverse function Delayed
model(ID model) as one of neuron models [1]. In addition,
we have propose Burst firing ID model [2] of Hodgkin-
Huxley(H-H) type model that has the burst oscillating char-
acteristics with three variables, because we consider that
the burst dynamics has prospects of capabilities of effective
tool for information processing consequently. The burst ID
model is explained with a new concept that the neuron dy-
namics is expressed as a motion of a quasi particle in a
potential with active areas, and then we are able to apply
the concept to others. Through the technique, we are able
to foresee the landscape of solutions with the curvature of
the potential and design the wave forms if we place the ac-
tive area on the potential properly [3]. In this paper, we
apply this concept to coupling systems and the concept is
effective in the interconnected systems too, and analyze the
dynamics of the coupled models with the burst firing char-
acteristics .

1. Introduction

We proposed the Inverse function Delayed model(ID
model) as one of neuron models [1]. In addition, we have
proposed Burst firing ID model of Hodgkin-Huxley(H-H)
type model that has the burst oscillation characteristics with
three variables, because we consider that the burst dynam-
ics has prospects of capabilities of effective tool for infor-
mation processing consequently. The burst ID model is ex-
plained with a new concept that the neuron dynamics is
expressed as a motion of a quasi particle in a potential with
active areas, and then we are able to apply the concept to
others. We are able to obtain the landscape of the solution
with the curvature of the potential. If the curvature is pos-
itive as a whole, the wave forms of the solutions are oscil-
lations or resting state without divergence. On the contrast,
when the curvature is negative, we can observe the diver-
gence solution.

This paper is organized as follows. We explain our con-
cept of potential with the active area in the next section.
We analyze the dynamics with van der Pol model as one of
the simplest nonlinear oscillator, and our concept is effec-
tive for analyses of coupled system in Sec.3. Last section,
we use Hindmarsh-Rose type model for the analyses of the
dynamics of coupled bursting oscillators.

2. Potential with Active Area

Neuron models are typically expressed in the form of
multidimensional nonlinear differential equation. Several
models can be transformed into higher differential equation
with one variable.

dnx
dtn
+ bn−1(x,

dx
dt
, · · ·, dn−1

dtn−1
)
dx
dt
+ · · · + b1(x,

dx
dt

)
dx
dt

= F(x, θ) = −∂U(x, θ)
∂x

(1)

U(x) is a kind of the potential function, and has some equi-
libria x0 that depend on the external inputθ. We have ob-
tained the characteristic equation and analyze the stability
at the neighborhood of equilibria determined in accordance
with Hurwitz’s theorem, and the condition ofx0 are sta-
ble(n=4), if

b0(x0) =
d2U(x0)

dx2
> 0, (2)

bi(x0) > 0, (i = 1,2, 3) (3)

B1(x0) = b2(x0, 0,0)b1(x0,0)− b0(x0)b3(x0,0,0, 0), > 0
(4)

B2(x0) = B1(x0)b1(x0,0)− b3(x0,0, 0)2b0(x0) > 0.
(5)

Equation (2) means that the curvatureb0 of the potential
U(x, θ) is positive atx0. An equilibrium points is unstable
whereb1(x) < 0 or b2(x) < 0 or b3(x) < 0 or B1(x) < 0
or B2(x) < 0 is satisfied even if the global curvature of the
potential is positive. In other words, if there is no equi-
librium point satisfy the requirement of Hurwitz’s theorem
and the global curvature is positive, it causes various oscil-
lations, for example, periodic limit cycle, burst firing and
so on. We identify the section, where coefficients and these
minors are negative, as active area. The section of x where
b1(x) < 0 is satisfied represents a negative damping area,
we call this areab1 active area.

3. van der Pol Model

3.1. Basic Equation

we explain our concept of potential and active areas with
stand-alone van der Pol model. Generally this model is
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expressed as following equation

d2x
dt2
− q(1− x2)

dx
dt
= −x. (6)

In this paper, we consider the following model equation of
van der Pol type, because we can set the active area arbi-
trarily considering the external input and time-delay.

τ
d2x
dt2
+ ϵ{(x− α)2 − β}dx

dt
=Wx+ Z = −∂U(x, θ)

∂x
.

(7)

We express in the form of differential equation with two
variable,

τ
dx
dt
= u− ϵ{1

3
x3 − αx2 + (α2 − β)x}

du
dt
=Wx+ θ. (8)

Wherex,u,W, θ, andτ are the output of the unit, the inter-
nal state, the self-connection, the external input, the time
constant respectively,α, β and ϵ are control parameters.
U(x, θ) is a kind of the potential function, described as

U(x) = −1
τ

(
1
2

Wx2 + θx). (9)

Potential function has one equilibrium pointx0 and the cur-
vature of potentialb0 =

∂2U(x,θ)
∂x2 = −W. Therefore the po-

tential function became a convex function ifW > 0 and
we obtain a divergence solution. In contrast, the potential
is concave function ifW < 0. The equilibrium point is
located internally in active area, the output is continuous
oscillation in this case. This system expressed by Eq.(7)
has one active areab1 active area.

b1(x) =
ϵ

τ
{(x− α)2 − β}. (10)

Theb1 active area is the section of x that where (x−α)2−β <
0 satisfied, whereβ > 0, α andβ denote parameters that
define the middle ofb1 active area and its width.

3.2. Interconnected Models

We discuss the interconnected system through technique
noted above, and we interconnect two units described by
Eq.(7), however the interconnection and self-connection
are equal(ωi j = ω ji = ω,Wx =Wy =W),

τx
d2x
dt2
+ ϵx{(x− αx)

2 − βx}
dx
dt
=Wx+ ωy+ θx, (11)

τy
d2y
dt2
+ ϵy{(y− αy)

2 − βy}
dy
dt
=Wy+ ωx+ θy. (12)

Equation (11) and (12) can be transformed into the differ-
ential equation with one variable x

d4x
dt4
+ b3(x)

d3x
dt3
+ b2(x, ẋ)

d2x
dt2
+ b1(x, ẋ)

dx
dt
= −∂U(x)

∂x
,

(13)

where

b1(x) = −W
τy
η(x) − W

τx
ζ(x), (14)

b2(x) = −W
τx
− W
τy
+ η(x)ζ(x), (15)

b3(x) = η(x) + ζ(x), (16)

B1(x) = b1(x)b2(x) − b3(x)b0(x), (17)

B2(x) = B1(x)b1(x) − b3(x)2b0(x), (18)

whereη(x) = ϵx
τx
{(x−αx)2−βx}, ζ(x) = ϵy

τy
{( Wx+θx

ω
+αy)2−βy}.

We can also obtain the potential function

U(x) =
1
τxτy
{1
2

(W2 − ω2)x2 + (Wθx − ωθy)x}. (19)

This potential has one equilibrium point as stand-alone
model, and the equilibrium pointx0 is

x0 = −
Wθx − ωθy
W2 − ω2

, (20)

and it also depends on the external inputs and the connec-
tion strength. The curvature of the potentialb0 is

b0(x) =
1
τxτy

(W2 − ω2), (21)

and hence we obtain a divergence solution if| W |<| ω |.
When the equilibrium point is located internally in some
of the five active areas described by Eq.(14)∼Eq.(18) with
|W |>| ω |, we can obtain continuous oscillations.

3.3. Fast-Slow Dynamics

We simulate the coupled system whereβy = 1.0, ϵx =
3.0, ϵy = 1.0, θy = 0.0, τx = 1.0, τy = 100, and observe the
outputx changing the parametersβx andθ. Figure.1 shows
the output and the position of active areas for the equilib-
rium point expressed by Eq.(20) of the quadratic potential.
The line L1 and L2 denote parameter sets when the equi-

librium point of the potential is on the edge of active areas.
It is within B1 active area all over the region in Fig.1. It
is within b1 active area andb2 active area above L1 and
L2. We are able to observe various oscillations near by L2.
For example, spike pulse(SP), oscillation with two differ-
ent frequencies (SFO) and bursting oscillation(FB). If we
change the parameterθx under an identical condition about
parameterβx. In region (a), we observe the slow oscillation
as a solution, we increase the external inputθx and cross
the Line 1, then we are able to get the spiking pulse in very
narrow region of diagram. When the more the equilibrium
point of the potential approachesb3 active area with in-
creasing the external input, the number of spikes per burst
increases generated in a time between resting states. Fig-
ure (2) shows various wave forms. In other words, if the
potential is single well form and there are active areas with
two different frequency, we are able to obtain the spiking
or bursting oscillation to set the active area with row fre-
quency on the equilibrium point and the active area of fast
oscillation near the equilibrium point.
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Figure 1: Parameter diagram of coupled van der Pol oscil-
lators. SP,SO,SFO,FB denote the spike pulse, the slow os-
cillation, the oscillation with two different frequencies and
the burst firing with undershoot.

4. Coupled Bursting Oscillators

4.1. Basic Equations for Hindmarsh-Rose Type Model

We are interested in coupled bursting oscillators, con-
sidering that our concept is very effective for the analyses
of these systems. Therefore, we choice Hindmarsh-Rose
Type[4] model as a bursting oscillator. We calculate the
following equations, because we are able to set the active
area optionally, interconnection between the units and time
constant of units.

τ
dx
dt
= u− z− g(x) + I , (22)

du
dt
= −u−W(x) + θ, (23)

dz
dt
= r{Z(x) − z}, (24)

g(x) = ϵ{1
3

x3 − αx2 + (α2 − β)x} (25)

W(x) = dx2 (26)

z(x) = s(x− z0) (27)

where x denotes the output,α, β, ϵ, d, r, s and z0 denotes
the control parameters,I denotes an external stimulate,θ
is the bias andτ is the time constant.g(x),W(x) andZ(x)
are defined according to the second section, we transform
Eq.(22)～(24) into the following single equation.

d3x
dt3
+ b2(x)

d2x
dt2
+ b1(x, ẋ)

dx
dt

= − r
τ

(g(x) + z(x) +W(x) − I − θ), (28)
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Figure 2: Time series of the outputx(t) for coupled van
der Pol model withβx=0.55. θx = −1.00 (a),θx = −0.80
(b),θx = −0.60 (c).

whereb2(x) andb1(x) functions are expressed as

b2(x) =
1
τ
ϵ{(x− α)2 − β} + r + 1, (29)

b1(x) =
1
τ
{(r + 1)ϵ{(x− α)2 − β} + 2dx+ r(s+ τ)}.

(30)

This differential equation generate the spiking burst for
0.82< I<3.25[5]. At this time, the potential function forms
single well, and a equilibrium point is covered byb1 ac-
tive area that controls the slow oscillation.b2 active area
is placed at beside equilibrium point. That is, the form of
the potential and the position of active areas on the poten-
tial(Fig.3) are similar to coupled van der Pol system. In-
creasing the time constantτ, the dynamics of this model
change dramatically. The output x is shown in Fig.4(b).
One of the features of this output, it has rapid oscillations
at the top of the saddle of the output. This type of burst-
ing oscillation called tapered bursting[6] is observed with
Burst ID model([3] Fig.6(b)). We make a connection be-
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Figure 3: Potential and active area of Hindmarsh rose
model whereI = 1.4, when we are able to observe a regu-
larly bursting oscillation.
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Figure 4: The time series of output x(t) and y(t) for
Hindmarsh-Rose type model without any connections,
whereα = 1, β = 1,d = 5, θ = 1, s = 4,Z0 = −1.6, r =
0.001,(a)I = 1.4, τ = 1, (b) I = 3.0, τy = 2.

tween this models in the form of the follows,

d3x
dt3
+ b2(x)

d2x
dt2
+ b1(x, ẋ)

dx
dt

= − r
τx

(g(x) + z(x) +W(x) − Ix − θx) + ωy, (31)

d3y
dt3
+ b2(y)

d2y
dt2
+ b1(y, ẏ)

dy
dt

= − r
τy

(g(y) + z(y) +W(y) − Iy − θy) + ωx. (32)

Figure 5 shows time series of the outputx(t) andy(t), where
τx = 1.0, τy = 2, Ix = 1.4, Iy = 3, ϵ = 3.0, α = 1.0, β =
1.0,d = 5, s = 4, z0 = −1.6, θ = 1, ω = 0.0005, rx =

0.001, ry = 0.001. Indexesx andy denote each units. This
model generate the periodic spiking pulse in stand-alone, if
Ix = 1.4. We are able to observe regular bursting spikes,
the output x and y show two type burst firing oscillate in
anti-phase. As we increase the connection strengthω, the
period of the bursting oscillations becomes longer, being
infinity eventually. That is, the outputs x and y become a
resting state. This dynamics is caused by a oscillation of
the potential expressed in Fig.3. The potential is forced to
oscillate by the bursting outputy(t).
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Figure 5: Time series of the outputx(t) and y(t) of the
coupled bursting oscillators, where (a)ω = −0.0005, (b)
ω = 0.00058. It shows two type bursting oscillations in
anti-phase of the spiking bursting and tapered bursting. The
period of bursting become longer as increasing the param-
eterω.

5. Conclusion

We apply our concept of the potential with active areas
to interconnected system. The bursting dynamics with un-
dershoot in single well is revealed. This dynamics has rela-
tion to the position of active area that controls fast oscilla-
tion for the equilibrium point. We figure out the dynamics
of the coupled system between bursting oscillators through
our concept.
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