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Abstract— We proposed the Inverse function Delayed. Potential with Active Area
model(ID model) as one of neuron models [1]. In addition, ) )
we have propose Burst firing ID model [2] of Hodgkin- Neqron m_odels are typically expressed in the form of
Huxley(H-H) type model that has the burst oscillating charmultidimensional nonlinear _fferer_mal equation. Sev.eral
acteristics with three variables, because we consider tH#0dels can be transformed into higheffeliential equation

the burst dynamics has prospects of capabilitiesfettive With one variable.

tool for information processing consequently. The burstID  gnx dx d-1 dx dx dx
model is explained with a new concept that the neuron dy- g *+ bn-1(x, FTR W)a (X, at’at
namics is expressed as a motion of a quasi particle in a AU(x, 0)

potential with active areas, and then we are able to apply = F(x.0) = T ax (1)

the concept to others. Through the technique, we are able . kind of th ial f . dh .
to foresee the landscape of solutions with the curvature ().() IS ahln do the dpotenrfla unct|o|n., an Washsome Equ"
the potential and design the wave forms if we place the a bria X, that depend on the externa InpLite have ob- .

tive area on the potential properly [3]. In this paper, w ained the characteristic equation and analyze the stability

apply this concept to coupling systems and the concept%tEeHne'g_hb,orthOd of equnébr;]a dete:jm_lned in accordance
effective in the interconnected systems too, and analyze t th Hurwitz’s theorem, and the condition o¢ are sta-

dynamies of the coupled models with the burst firing char- e(n=4), if

acteristics . bo(xg) = dZ(LjJ )szo) -0, @

1. Introduction bi(x) >0,(i=12,3) 3)
We proposed the Inverse function Delayed model(ID B1(X0) = b2(%0, 0, 0)b1 (%o, 0) — bo(x0)bs(>0, 0, 0, O)’(Z)O

model) as one of neuron models [1]. In addition, we have
proposed Burst firing ID model of Hodgkin-Huxley(H-H) Ba2(X0) = B1(Xo)by(Xo, 0) — bs(%o. 0. 0)°bo(Xo) > O.
type model that has the burst oscillation characteristics with (5)

three variables, because we consider that the burst dynaﬁﬁuation (2) means that the curvatuxgof the potential
ics has prospects of capabilities dfetive tool for infor- U(x, 6) is positive at. An equilibrium points is unstable

mation processing consequently. The burst ID model is ei?\'/herebl(x) < 0 0rby(x) < 0 0rbs(X) < 0 orBy(x) < 0

plained with a new concept tha.t the_negron dynar_n|cs_| r Bo(X) < O is satisfied even if the global curvature of the
expressed as a motion of a quasi particle in a potential wi

i dth ble t v th i tential is positive. In other words, if there is no equi-
active areas, and then we are able 1o apply the concep I|t8rium point satisfy the requirement of Hurwitz’s theorem

ot_hers. We are able to obtain the landscape of the .SOIUt'%'ﬁd the global curvature is positive, it causes various oscil-
with the curvature of the potential. If the curvature is pos ations, for example, periodic limit cycle, burst firing and

itive as a whole, the wave forms of the solutions are osci S0 on. We identify the section, where @iigients and these
Shinors are negative, as active area. The section of x where

when the curvature is negative, we can observe the d|vegi(x) < 0'is satisfied represents a negative damping area,

gence SOIUt'Or.]' . . we call this ared; active area.
This paper is organized as follows. We explain our con-

cept of potential with the active area in the next section.

We analyze the dynamics with van der Pol model as one gf van der Pol Model
t_he simplest nonlinear oscillator, anc_i our conceptfise _3.1. Basic Equation
tive for analyses of coupled system in Sec.3. Last section,
we use Hindmarsh-Rose type model for the analyses of thewe explain our concept of potential and active areas with
dynamics of coupled bursting oscillators. stand-alone van der Pol model. Generally this model is
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expressed as following equation where

W W

d?x dx bi(X) = ——n(X) — —2(X), 14
o -a- Xz)a _ 5 ©) 1(X) Tyn( ) Txé’( ) (14)

W W
In this paper, we consider the following model equation of b2 = —— — — + n(Xx){(x), (15)

van der Pol type, because we can set the active area arbi- X Y
trarily considering the external input and time-delay. ba(x) = n(¥) + (%), (16)
B = bi(X)b -b , 17
Px ,dx U(x.6) 1(X) = by (X)b2(X) — bs(X)bo(x) (17)
Tae T x-S =Bl = WX Z= - — B2(X) = Br(X)br(X) — bs(x)°bo(x), (18)

() wheren(x) = £((x-0x)?~. £(9) = LU +ay)?-,).
We express in the form of fierential equation with two We can also obtain the potential function

iabl
variable, U = TL{%(WZ — W)X + (W — wby)x}.  (19)

dx 1 xTy
— =Uu-€e=xX - ax® + (@ - B)X
Tt 6{3 X+ (@” =B This potential has one equilibrium point as stand-alone
dU_\wxre ®) model, and the equilibrium poing is
dt W - why 20
Wherex, u, W, 8, andr are the output of the unit, the inter- X =- W2 — 2’ (20)

nal state, the self-connection, the external input, the timgnd it also depends on the external inputs and the connec-

constant respectivelyy, 5 and e are control parameters. tion strength. The curvature of the potentiglis
U(x, 0) is a kind of the potential function, described as 1
bo(x) =

11
UX) = —=(ZWX +6X). (9) Txty
T2 and hence we obtain a divergence solutioh\i¥ |<| w |.
Potential function has one equilibrium poigtand the cur- When the equilibrium point is located internally in some

vature of potentiaby = ‘92‘;# = —W. Therefore the po- of the five active areas described by Eq.(189.(18) with
tential function became a convex functionVif > 0 and | W [>| w |, we can obtain continuous oscillations.
we obtain a divergence solution. In contrast, the potential

is concave function ifW < 0. The equilibrium point is 3-3- Fast-Slow Dynamics

Ioce}ted_ int(_arnallly in active area, the output is continuous \ne simulate the coupled system whgke= 1.0, 6, =
oscillation in this case. This system expressed by Eq.(@_o’Ey = 10,6, = 00,7, = 1.0,7, = 100, and observe the
has one active ares active area. outputx changing the parametesg and6. Figure.1 shows
€ 2 the output and the position of active areas for the equilib-

bi(X) = ZH(x =~ a)" - B} 10 fium point expressed by Eq.(20) of the quadratic potential.
The line L1 and L2 denote parameter sets when the equi-
librium point of the potential is on the edge of active areas.
It is within B; active area all over the region in Fig.1. It
is within b; active area andb, active area above L1 and
L2. We are able to observe various oscillations near by L2.
For example, spike pulse(SP), oscillation with twdfeti-

We discuss the interconnected system through techniqeat frequencies (SFO) and bursting oscillation(FB). If we
noted above, and we interconnect two units described lghange the parametér under an identical condition about
Eq.(7), however the interconnection and self-connectioparametegy. In region (a), we observe the slow oscillation
are equalfi; = wji = w, Wy = Wy = W), as a solution, we increase the external infuand cross

> the Line 1, then we are able to get the spiking pulse in very
d-x 2 dx : . P
Ty— + 6{(X — ax)? = By} == = WX+ wy + 6, (11) harrow region of diagram. When the more the equilibrium
dt? dt point of the potential approachéds active area with in-
d creasing the external input, the number of spikes per burst
Tyd_tz + 6y - ay)? —ﬁy}d—i/ =Wy+tox+8. (12)  jhcreases generated in a time between resting states. Fig-
Equation (11) and (12) can be transformed into theedi ure (2). ShOW.S various wave forms. In otherlwords, i the
ential equation with one variable x potenpal is single well form and there are actllve areas vylth
two different frequency, we are able to obtain the spiking
d*x d®x _ d?x ., dx 0U(x) or bursting oscillation to set the active area with row fre-
gz T gg + (% N b X) = ———="=. quency on the equilibrium point and the active area of fast
(13) oscillation near the equilibrium point.

(W2 — ?), (21)

Theb; active area is the section of x that whexe ¢)°—8 <
0 satisfied, wherg > 0, @ andg denote parameters that
define the middle ob; active area and its width.

3.2. Interconnected Models

2
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Figure 1. Parameter diagram of coupled van der Pol oscil-
lators. SP,SO,SFO,FB denote the spike pulse, the slow os- 1000 1050 1100 1150 120C
cillation, the oscillation with two dferent frequencies and
the burst firing with undershoot. 2 T T .

(c)o
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_ _ _ _ Time[t]

We are interested in coupled bursting oscillators, con-
sidering that our concept is veryfective for the analyses Figure 2: Time series of the outputt) for coupled van
of these systems. Therefore, we choice Hindmarsh-Rogg; pol model WithB,=0.55. 6, = —1.00 (a),0y = —0.80
Type[4] model as a bursting oscillator. We calculate th?b),ax - ~0.60 (c).
following equations, because we are able to set the active
area optionally, interconnection between the units and time
constant of units.

4. Coupled Bursting Oscillators

4.1. Basic Equations for Hindmarsh-Rose Type Model

T% =u-z-g(x) +1, (22) whereb;(x) andb, (x) functions are expressed as
%’ =—u—W(X)+6, (23)
1
dz _ [z - 2) (24) by(X) = ;e{(x—a)z—ﬁ}+r+l, (29)
dt ’
by (x) = %{(r + 1el(x — @)? — B} + 2dx+ r(s+ 1)}

1 2 (2 (30)
909 = el33° ~ ax + (o* - p)x) (25)
W(X) = dx@® (26)
2x) = S(X - 20) (27) This differential equation generate the spiking burst for

0.82 < 1.3.25[5]. At this time, the potential function forms
single well, and a equilibrium point is covered by ac-
X tive area that controls the slow oscillatiob, active area
the control parameters, denotes an external stimulat®, s piaced at beside equilibrium point. That is, the form of
is the bias and- is the time constantg(x), W(x) andZ(x)  the potential and the position of active areas on the poten-
are defined agcordlng to thg seqond sectloh, we transforﬁm(FigS) are similar to coupled van der Pol system. In-
Eq.(22)] (24) into the following single equation. creasing the time constant the dynamics of this model
change dramatically. The output x is shown in Fig.4(b).
One of the features of this output, it has rapid oscillations
ae "’ bZ(X)W at the top of the saddle of the output. This type of burst-
__r L ing oscillation called tapered bursting[6] is observed with
a T(g(X) A+ WO~ 1 - 0), (28) Burst ID model([3] Fig.6(b)). We make a connection be-

where x denotes the outputy,, €,d,r, s and zyp denotes

3 2
d'x d X+b1(X,X)%(
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b1(x)=: = —4F (a) Time [t] (b) Time [t]
b2(x) = = = = St
BIX)— = Figure 5: Time series of the outpuft) and y(t) of the

coupled bursting oscillators, where @)= —0.0005, (b)
Figure 3: Potential and active area of Hindmarsh rose = 0.00058. It shows two type bursting oscillations in
model wherd = 1.4, when we are able to observe a reguanti-phase of the spiking bursting and tapered bursting. The
larly bursting oscillation. period of bursting become longer as increasing the param-
eterw.

5. Conclusion

Output x(t)

We apply our concept of the potential with active areas
to interconnected system. The bursting dynamics with un-
dershoot in single well is revealed. This dynamics has rela-
Z tion to the position of active area that controls fast oscilla-
ST T T tion for the equilibrium point. We figure out the dynamics

? ® of the coupled system between bursting oscillators through
our concept.

Output x(t)

Figure 4. The time series of output x(t) and y(t) for
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