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Abstract—In this paper, we propose a generalized er-
godic cellular automaton model of a central pattern gen-
erator. The proposed model can realize synchronization
phenomena, which can realize typical gaits of a quadruped
robot. It is shown that by mixing coupling matrices based
on a chopper manner, the proposed model can realize
mixed gaits of the quadruped robot depending on the ratios
of the matrices in the chopper. Also, it is shown that the
proposed model is more hardware-efficient compared to a
straightforward implementation of an ordinary differential
equation central pattern generator model.

1. Introduction

Multilegged creatures such as ants and spiders, and leg-
less creatures such as snakes and fish can perform various
types of walking, crawling, and swimming locomotion us-
ing flexor and extensor muscles that are moved in rhythmic
patterns. These rhythmic patterns are thought to be gen-
erated by the central pattern generator (CPG) in the central
nervous system [1][2]. In the previous study [3], an ergodic
cellular automaton CPG model to realize some typical gaits
of a quadruped robot was designed. On the other hand, in
this study, the circuit structure of the ergodic cellular au-
tomaton CPG model is generalized so that its coupling ma-
trix can be changed in a chopper manner. It is shown that
the proposed CPG model can realize various gaits of the
quadruped robot by adjusting the chopper ratio of the cou-
pling matrices.

2. Ergodic Cellular Automaton CPG

In this section, the ergodic cellular automaton CPG
model [3] is introduced. Fig. 1 shows a schematic dia-
gram of the CPG model. The CPG model consists of eight
ergodic cellular automaton oscillators. Each i-th oscillator
has six registers, which store discrete state variables Xi and
Yi and discrete auxiliary variables Pi, Qi, Vi, and Ui. These
variables are defined as follows.

Xi ∈ ZN = {0, . . . ,N − 1},Yi ∈ ZN ,

Pi ∈ ZM = {0, . . . ,M − 1},Qi,Vi,Ui ∈ ZM ,
(1)
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Figure 1: Schematic diagram of ergodic cellular automaton CPG
model [3].

where Xi and Yi work as state variables, and Pi, Qi, Vi,
and Ui work as state-dependent frequency dividers. The
oscillator receives a periodic clock Ci(t) =

∑∞
n=0 p(t−nTCi),

where p(t) = 1 if t = 0 and p(t) = 0 if t , 0. In addition, the
oscillator receives binary switch signals S Xi(t) =

∑∞
n=0 q(t−

nTXi − ΦXi,WXi) and S Yi(t) =
∑∞

n=0 q(t − nTYi − ΦYi,WYi),
where q(t) = 1 if t ∈ [0,W], q(t) = 0 if t < [0,W], TXi

and TYi are periods, and WXi and WYi are pulse durations.
When the clock Ci(t) = 1 arrives, the state variables Xi and
Yi undergo the following transitions.

Xi(t+) = Xi(t) + S Xi(t)FX(Xi(t),Yi(t), Pi(t))
+S Gi(t)Gi(X(t),V(t)),

Yi(t+) = Yi(t) + S Yi(t)FY (Xi(t),Yi(t),Qi(t))
+S Gi(t)Gi(Y(t),U(t)),

(2)

where FX ∈ {−1, 0, 1} and FY ∈ {−1, 0, 1} are discrete func-
tions designed to realize appropriate oscillation. The clock
Ci(t) induces transitions of the discrete auxiliary variables
Pi, Qi, Vi, and Ui so that these variables work as state-
dependent frequency dividers. In addition, Gi ∈ {−1, 0, 1}
is a discrete function, which couples the oscillators, where
X = (X1, ...X8), Y = (Y1, ...Y8), V = (V1, ...V8), and
U = (U1, ...,U8).

3. Chopper Type Mixed Gaits

In this section, the CPG model is generalized so that the
discrete function Gi for the coupling is chopper type time-
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Figure 2: Chopper signal CP(t) that changes of the coupling
matrix W.

variant as follows.

Gi(X(t),V(t),W(1),W(2),CP(t)) = (σ
∑8

j=1 w(1)
i j (X j − N/2))−1 if CPi(t) = 1,

(σ
∑8

j=1 w(2)
i j (X j − N/2))−1 if CPi(t) = 0,

(3)

where

W(k) =


w(k)

1,1 w(k)
1,2 . . . w(k)

1,8
w(k)

2,1 w(k)
2,2 . . . w(k)

2,8
...

...
. . .

...

w(k)
8,1 w(k)

8,2 . . . w(k)
8,8

 , (4)

CP(t) =
{

1 if t (mod T (1) + T (2)) ≤ T (1),

0 if t (mod T (1) + T (2)) > T (1).
(5)

The signal CP(t) is used to realize chopper type mixing of
the two coupling matrices W(1) and W(2) (see Fig. 2), where
the period T (1)+T (2) of the chopper signal CP(t) is assumed
to be much shorter than oscillation periods of the ergodic
cellular automaton oscillators. In this paper, the following
two coupling matrices are used.

W(1) =WF =



0 −1 −1 1 2 0 0 0
−1 0 1 −1 0 2 0 0
−1 1 0 −1 0 0 2 0
1 −1 −1 0 0 0 0 2
2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0


(6)

W(2) =WR =



0 1 −1 −1 2 0 0 0
1 0 −1 −1 0 −2 0 0
−1 −1 0 1 0 0 2 0
−1 −1 1 0 0 0 0 −2
2 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 −2 0 0 0 0


(7)

It will be confirmed in the next section that the coupling
matrices WR and WF realize the forward walk and right-
ward rotation of a quadruped robot. Note that the main
purpose of this study is to analyze the effects of choppering
of these matrices. To analyze the effects of the choppering,
the following chopper rate TR is introduced.

TR =
T (2)

T (1) + T (2) . (8)

(a)

(b)

(c)

(d)

Figure 3: Time waveforms of the ergodic cellular automaton
CPG model. (a) TR = 0.0. (b) TR = 0.2. (c) TR = 0.5. (d)
TR = 1.0.
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Figure 4: Quadruped robot controlled by the ergodic cellular
automaton CPG implemented in the FPGA.

Fig. 3 shows typical time waveforms of the ergodic cellular
automaton CPG model for some values of the chopper rate
TR as follows.

• In the case of Fig. 3(a), the chopper rate TR is 0.0.
This corresponds to W =WF .

• In the case of Figs. 3(b) and (c), the chopper rates
TR are 0.2 and 0.5, respectively. In these cases, the
coupling matrix W is given by mixing WF and WR in
the chopper manner.

• In the case of Fig. 3(d), the chopper rate TR is 1.0.
This corresponds to W =WR.

In the next section, it is shown that the gait of a quadruped
robot undergoes bifurcations by changing the chopper rate
TR.

4. FPGA Implementation of CPG and Bifurcations of
Robot Gaits

The dynamics of the ergodic cellular automaton CPG
were written in a register transfer level Verilog-HDL
code, which was compiled by Xilinx’s design suite Vivado
2020.1. The generated bitstream file was used to imple-
ment Xilinx’s field programmable gate array（FPGA）de-
vice XC7A35T-1CPG236C. As shown in Fig. 4, the FPGA
was mounted on Adeept’s quadruped robot Dark Paw. Fig.
5(a), (b), (c), and (d) shows gaits of the robot correspond-
ing to the time waveforms in Fig. 3(a), (b), (c), and (d),
respectively as follows.

• In the case of Fig. 5(a), the chopper rate TR is 0.0. In
this case, the robot realizes a forward walk.

(a)

(b)

(c)

(d)

Figure 5: Gaits of the quadruped robot. (a) TR = 0.0. (b) TR =

0.2. (c) TR = 0.5. (d) TR = 1.0.
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Figure 6: Bifurcation diagram of the gaits of the quadruped
robot. (a)-(d) correspond to Figs. 3(a)-(d), respectivily.

• In the case of Fig. 5(b), the chopper rate TR is 0.2. In
this case, the robot realizes a leftward walk. Note that
the coupling matrix W is given by mixing the matrices
WF and WR for the forward walk and the rightward
rotation, i.e., the coupling matrix W includes no factor
for leftward walk but realizes the leftward walk.

• In the case of Fig. 5(c), the chopper rate TR is 0.5. In
this case, the robot realizes a complicated gait includ-
ing falling down.

• In the case of Fig. 5(d), the chopper rate TR is 1.0. In
this case, the robot realizes a rightward rotation.

Fig. 6 shows a bifurcation diagram of the gaits of the
quadruped robot. It can be seen that the robot undergoes
the following bifurcations.

• The forward gait is changed to leftward walk by in-
creasing the chopper rate TR near the point α.

• The leftward walk is changed to the complicated gait
including the falling down by increasing the chopper
rate TR near the point β.

• The complicated gait including the falling down is
changed to the rightward rotation by increasing the
chopper rate TR near the point γ.

Detailed analyses of the occurrence mechanisms of these
bifurcations are now under intensive investigations and will
be presented in the conference. Table 1 shows comparisons
of the ergodic cellular automaton CPG model and a differ-
ential equation CPG model [4], where the differential equa-
tion model was implemented in the same FPGA device by
using the forward Euler formula. It can be seen that the
ergodic cellular automaton CPG model is more hardware
efficient.

5. Conclusions

In this study, the gait of the quadruped robot was realized
using the ergodic cellular automaton CPG, and it was con-

Table 1: Comparisons.

firmed that bifurcation phenomenon of the gaits occurred
by switching the coupling matrix in the chopper manner.
This study also compared the ergodic cellular automaton
model with the conventional differential equation model.
As a result, the number of LUTs was reduced by about
35%, the number of FFs was increased by about 60%, and
power consumption was reduced by about 40%, where note
that the number of transistors used to implement the FF is
much smaller than that used to implement the LUT. Future
work includes (a) the application of ergodic cellular au-
tomaton CPG to posture control using flexor and extensor
muscles, and (b) analysis of synchronization phenomena
for various time-varying coupling weights like [6]. This
work was supported by SCAT and KAKENHI Grant Num-
ber 21H03515.
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