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Abstract— This paper studied a simple synthesis
method of permutation binary neural networks. The
network is characterized by local binary connection,
global permutation connection, and the signum activa-
tion function. Depending on the connection, the net-
work generates various periodic orbits of binary vec-
tors. The synthesis method is based on the genetic
algorithm. Performing basic numerical experiments,
efficiency of the synthesis method is confirmed.

1. Introduction

Discrete-time recurrent-type neural networks are
characterized by real valued connection parameters
and nonlinear activation functions [1]-[3]. In the net-
works, fixed points have been analyzed sufficiently.
However, analysis of periodic orbits is extremely hard.
In order to consider periodic orbits, we introduce a
permutation binary neural network (PBNN [4]). The
PBNN is simple recurrent-type network with a variety
of periodic orbits. The PBNN is characterized by lo-
cal binary connection, global permutation connection,
and the signum activation function. The PBNN can
be regarded as a simplified version of the dynamic bi-
nary neural network (DBNN [5] [6]). Depending on
the parameters, the PBNN generates various periodic
orbits of binary vectors (BPOs). Engineering applica-
tions of the BPOs include control signal of switching
power converters [7], control signal of walking robots
[8], and reservoir computing for time-series approxi-
mation/prediction [9].

This paper presents synthesis of a PBNN that gen-
erates longer BPOs. In order to evaluate BPOs, we
define two feature quantities. The first feature quan-
tity evaluates period of the BPOs. The second fea-
ture quantity evaluates direct stability of the BPOs.
As the system size increases, the brute force attack of
permutation connection becomes impossible. In order
to realize the synthesis effectively, we present a simple
algorithm based on the genetic algorithm. In the al-
gorithm, an individual corresponds to a permutation
and the objective function is the first feature quantity.
Performing basic numerical experiments, efficiency of
the synthesis method is confirmed. This is the first
paper of a synthesis method of PBNN.

2. Permutation Binary Neural Networks

First, we introduce a simple binary neural network
(SBNN) corresponding to the input to hidden layers
in the PBNN. The dynamics is described by
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where xt
i ∈ B is the i-th binary state variable at dis-

crete time t. As shown in Fig. 1 (a), xt
N+1 ≡ xt

1 and
xt
0 ≡ xt

N for ring-type connection. The SBNN is char-
acterized by local binary connection and the signum
activation function. The local binary connection is
determined by three binary valued connection param-
eters wa ∈ B, wb ∈ B, and wc ∈ B. Fig. 1 illustrates
an example of SBNN and BPO.

Adding global permutation connection from hidden
to output layer, the PBNN is constructed. The dy-
namics is described by
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where yti ∈ B is the i-th binary hidden state and
σ is a permutation. Let xt ≡ (xt

1, · · · , xt
N ) and let

yt ≡ (yt1, · · · , ytN ). The local binary connection (from
input to hidden layers) transforms a binary input vec-
tor xt into the binary hidden vector yt. The global

Figure 1: An example of SBNN and BPO. (a) Network
configuration. Red and blue branches denote positive
and negative connections, respectively. (b) BPO with
period 4.
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permutation connection (from hidden to output lay-
ers) transforms the yt into the binary output vector
xt+1. Depending on the parameters and initial condi-
tions, the PBNNs can generate various BPOs. A BPO
with period p is defined by

z1, · · · , zp, · · ·
{

zt1 = zt2 for |t2 − t1| = np
zt1 ̸= zt2 for |t2 − t1| ̸= np

(3)

where zt = (zt1, · · · , ztN ), zti ∈ B and n denotes positive
integers. An element zt of the BPO is referred to as
a binary periodic point (BPP). An initial point ze is
said to be a direct eventually periodic point (DEPP)
if ze is not a BPP but falls into a BPO directly. Fig.
2 illustrates an example of PBNN given by

(wa, wb, wc) = (+1,+1,−1), σA =

(
1 2 3 4
3 4 2 1

)
(4)

As shown in Fig. 2 (b), this PBNN exhibits a BPO
with period 6. In Fig. 2 (a), the local binary connec-
tion is the same as the connection of SBNN in Fig.
1 (a): applying the global permutation connection to
the SBNN of BPO with period 4, we obtain the PBNN
that generates BPO with period 6.

Figure 2: An example of PBNN and BPO. (a) Net-
work configuration. Black branches denote permuta-
tion connection. (b) BPO with period 6 and DEPPs.

3. Feature quantities and synthesis algorithm

In order to evaluate BPOs, we define two feature
quantities. The PBNN can have multiple BPOs and
exhibits one of them depending on the initial points.
Since consideration of multiple BPOs is not easy, we
consider one BPO with the maximum period (MBPO).
The first feature quantity is defined by

F1(σ) =
The period of an MBPO

2N
(5)

where 0 ≤ F1(σ) ≤ 1. Roughly speaking, F1(σ) eval-
uates complexity of the MBPO. The second feature
quantity is defined by

F2(σ) =
# DEPPs falling into the MBPO

2N
(6)

where 0 ≤ F2(σ) ≤ 1. F2(σ) evaluates direct stabil-
ity of the MBPO. As F2(σ) increases, direct stability
of the MBPO becomes stronger. If multiple MBPOs
exist, one MBPO with larger F2(σ) is adopted. The
direct stability corresponds to 1-bit error correction in
binary code. If Fig. 2 (b) gives the MBPO, we obtain

F1(σA) =
6

16
, F2(σA) =

8

16
(7)

In order to obtain an MBPO with long period, we
introduce a simple evolutionary algorithm. In the al-
gorithm, F1(σ) is used as the objective function.

Maximize F1(σ) (8)

Let σk denote the k-th individual corresponding to the
permutation. A set of Mg individuals {σ1, · · · , σMg}
is referred to as a population. Let g denote the gen-
eration of the algorithm evolution. The evolutionary
algorithm is defined as the following.

Step 1 (Initialization):
Let g = 1. We prepare an initial identity populations.

σ1 = · · · = σMg =

(
1 2 · · · N
1 2 · · · N

)
(9)

Step 2(Genetic operation): For k = 1, · · · ,Mg, do.

• Using ranking selection, one individual is selected.

• Applying a mutation to the selected individual, a
new individual is generated. The mutation means
exchanging two randomly selected elements in σ.
For example, if the 2nd element and Nth element
are selected, then the following is executed:

σ =

(
1 2 · · · N

σ(1) σ(2) · · · σ(N)

)
⇓

σ =

(
1 2 · · · N

σ(1) σ(N) · · · σ(2)

) (10)

Step 3 (Evaluation):
Each individual is evaluated by F1(σ). We apply the
elite strategy. Using F1(σ), we sort the individuals
and save the best individual for the next generation.
The best individual is evaluated by F2(σ).
Step 4 (Termination):
Let g ← g+1, go to Step 2, and repeat until the max-
imum generation gmax.
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It should be noted that, in this algorithm, the num-
ber of evaluations is at most Mg× gmax. This number
corresponds to computation cost. The brute force re-
quires the much larger number of evaluations N !.

4. Numerical experiments

We have applied the algorithm with parameters

Conection parameters: (wa, wb, wc) = (+1,+1,−1)
Dimension of input vector: N = 10
The number of individuals: Mg = 50
The maximum generation: gmax = 20.

(11)
The algorithm has an initial individual σ0 in Fig. 3
(a) at generation g = 0.

σ0 =

(
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

)
(12)

F1(σ0) =
10

1024
, F2(σ0) =

40

1024
. (13)

At g = 10, we obtain σ10 in Fig. 3 (b).

σ10 =

(
1 2 3 4 5 6 7 8 9 10
6 5 2 3 10 7 4 8 1 9

)
(14)

F1(σ10) =
62

1024
, F2(σ10) =

98

1024
. (15)

At g = gmax, we obtain σ20 in Fig. 3 (c).

σ20 =

(
1 2 3 4 5 6 7 8 9 10
1 8 4 10 3 5 6 2 9 7

)
(16)

F1(σ20) =
98

1024
, F2(σ20) =

132

1024
. (17)

F1(σ) for g is shown in Fig. 3 (d).

5. Conclusions

We have studied a simple synthesis method of
PBNN. The objective function is period of BPO. The
method is based on the genetic algorithm with a mu-
tation operator corresponding to exchange. Executing
elementary numerical experiments, the algorithm per-
formance is investigated.

In our future works, we should consider optimization
of parameters, multiobjective optimization problem of
PBNN, and application to real world problems.

Figure 3: PBNNs and F1(σ) for g. (a) PBNN of σ0.
(b) PBNN of σ10. (c) PBNN of σ20. (d) The maximum
of F1(σ) for g.
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