
Oscillatory behaviors of axon membrane potential using multi-compartment
model of Bonhoeffer-Van der Pol oscillator

Naoki Matsumiya†, Kuniyasu Shimizu†, Naohiko Inaba‡

†Dept. of Information and Communication Systems Engineering, Chiba Institute of Technology,
2–17–1 Tsudanuma, Narashino, Chiba 275-0016, Japan

‡Graduate School of Electrical and Information Engineering, Shonan Institute of Technology,
1-1-25 Tsujidou-Nishikaigan, Fujisawa, Kanagawa 251-8501, Japan

Email: s18a5120kr@s.chibakoudai.jp, kuniyasu.shimizu@it-chiba.ac.jp

Abstract—This paper investigates multi-compartment
model mimicing axon membrane potential by using sim-
plified model of Hodgkin-Huxley model; Bonhoeffer-Van
der Pol oscillator. In this study, we assume that a sinu-
soidal perturbation is injected to membrane potential at the
single edge of the nerve fibre. We report that a traveling
membrane potential consisting of mixed-mode oscillations
is observed. Futhermore, the increment of small peaks of
the mixed-mode oscillations originates from the coupling
effect. In addition, the small peaks are also influenced by
the angular frequency of the periodic perturbation.

1. Introduction

Hodgkin-Huxley (HH) model is known to mimic axon
membrane potential, and show various nonlinear oscilla-
tions [1, 2]. Bonhoeffer-Van der Pol (BVP) oscillator is the
simplified version of HH model where electrical activity of
the membrane is represented by two variables [3]. Mixed-
mode oscillations (MMOs) are phenomena found in chem-
ical experiments. They have distinctive waveforms in the
time series, and consist of L large amplitude excursions and
s small peaks. We assign them symbol Ls. In our previous
studies, we reported that BVP oscillator with periodic per-
turbation showed a complicated MMOs both in numerical
and experimental results [3, 4].

This study investigates oscillatory behaviors in multi-
compartment model of BVP oscillator, where the lumped
BVP oscillators are coupled by the axoplasmic resistance.
We assume that a sinusoidal perturbation is injected to the
membrane potential at the single edge of the nerve fibre.
We numerically show that a traveling membrane potential
consisting of MMO-sequences exists. In particular, we re-
port that the increment of small peaks of MMOs originates
from the coupling effect via the axoplasmic resistance. In
addition, the small peaks are also influenced by the angular
frequency of the periodic perturbation.
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Figure 1: BVP oscillator.

Figure 2: Multi-compartment model of BVP oscillator.

2. Circuit setup

Figure 1 shows a BVP oscillator which consists
of an inductor(Lm[H·cm2]), a capacitor(Cm[F/cm2]), a
resistor(Rm[Ω·cm2]), a nonlinear conductance(G[S·cm2]),
and a DC voltage source(E0[V]). In this study, we as-
sume that the voltage-current characteristic of G is written
by a third-order polynomial; g(v) = −g1v + g3v3, where
g1, g3 > 0. The BVP circuit is a simplified model mimic-
ing axon membrane potential. The voltage between the
capacitor Cm corresponds to a membrane potential. The
membrane ionic current (iion[A/cm 2]) is equivalently rep-
resented by

iion = i − g(v). (1)
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Figure 3: 3D plot of timeseries of membrane potential for
ω = 0.7.

Figure 4: Timeseries of x1 for ω = 0.7.

In this study, we consider a multi-compartment model
based on BVP oscillator, where the model is a cylindri-
cal axonal nerve membrane of radius r[cm] with length
l[cm]. To realize the model, we discretize the nerve consist-
ing of the BVP oscillator into a segment of length ∆x[cm].
We assume that the axoplasmic resistance between the dis-
cretized two nodes(R[Ω]) depends on the Ohm’s law; R =
ρ j∆x/(πr2), where ρ j[Ω·cm] represents the resistivity of the
j−th node. In addition, the membrane capacitance(C[F])
and the membrane ionic current(i o

j [A]) of the nerve seg-
ment are given by C = 2πr∆xCm and by i o

j = 2πr∆xiion
j ,

respectively. Figure 2 shows the schematic diagram of the
multi-compartment model. From the Kirchhoff’s current
law, the following differential equation for the j−th node
can be written by

v j+1 − v j

ρ j∆x
πr2

+
v j−1 − v j

ρ j∆x
πr2

= 2πr∆xCm + 2πr∆xiion
j . (2)

In the following, we consider that l = 1[cm] length nerve
fibre with radius r is discretized using a spatial resolution of
∆x = 0.01[cm]. That is, the number of nerve segments(M)
is set to M = l

∆x + 1 = 101. We use the zero-flux boundary

(a) 12.

(b) 13.

(c) 14.

Figure 5: Timeseries of x j, j = 15, 24, 30 for ω = 0.7.

condition; v1 = v2, vM = vM−1. Futhermore, in this study,
we assume that a sinusoidal perturbation E1 sin(ω1t) is in-
jected to the membrane potential at the single edge of the
nerve fibre; v1 and v2.

By introducing the following parameters and the vari-
ables as

ε ≡ Cm

g2
1Lm
, k1 ≡ g1Rm, σ ≡

r
2ρ jg1(∆x)2 , a ≡ l

10−2 ,

B0 ≡
√

g3

g1
E0, B1 ≡

√
g3

g1
E1, ω ≡ Lmg1ω1,

τ ≡ t
Lmg1

, x j ≡
√

g3

g1
v j, y j ≡

√g3

g3
1

i j,

the normalized version of Eq.(2) is derived as follows

ε
dx j

dτ
=


σ j (x j+1 − x j) − y j + x j − x3

j ( j = 2)
σ j (x j−1 − x j) − y j + x j − x3

j ( j = M − 1)
σ j (x j+1 − 2x j + x j−1) − y j + x j − x3

j
( j = 3, . . . ,M − 2)
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(a) 12.

(b) 13.

(c) 14.

Figure 6: Trajectries of the timeseries in Figs. 5 (a)–(c) and
the x j-and y j-nullclines on the phase plane.

(3)

,where the dynamics of the normalized current y j is written
by

dy j

dτ
=

 −x j − k1y j + B0 + B1 sin(ωτ) ( j = 2)
−x j − k1y j + B0 ( j = 3, . . . ,M − 1). (4)

3. Mixed-mode oscillations

In this study, we focus on MMOs in the multi-
compartment model using BVP oscillator. In the following
results, we fix the parameters as ε = 0.1, k1 = 0.9, B0 =

0.22, B1 = 0.16 and σ = 0.625, and we employ the an-
gular frequency of the forcing term ω as a control param-

Figure 7: 3D plot of timeseries of membrane potential for
ω = 0.57.

eters. In addition, the initial condition of the dynamical
system is set to x j(0) = 0.566218 and y j(0) = −0.384687
( j = 1, 2, . . . ,M). The initial condition is set to the equlib-
rium point of the isolated BVP oscillator with the fixed pa-
rameters and with no periodic perturbation.

Figure 3 shows 3D plot of timeseries of membrane po-
tential x j, j = 1, 2, . . . ,M, when we use ω = 0.7. From
the figure, the traveling membrane potential is observed.
The timeseries of x1 where the sinusoidal perturbation is in-
jected represents MMOs of 11 as shown in Fig. 4. Figures 5
(a)–(c) show the timeseries of the membrane potential x j,
j = 15, 24, 30, respectively. From the timeseries, the num-
ber of small peaks of MMOs increases for larger j. That
is, we are able to observe the three distinctive waveforms
of MMOs; 12, 13 and 14. For j > 30, the waveform of the
timeseries shows MMO-sequence 14 as shown in Fig. 5 (c).
Figure 6 shows the trajectry on the phase plane of the time-
series in Fig.5. In this figure, the x j-and y j-nullclines with
no periodic perturbation and with no coupling are depicted
by the black solid curve and by the black dotted line, re-
spectively. The small cycles around the equlibrium point
correspond to the small peaks in the timeseries. The incre-
ment of the small peaks of MMOs was reported in our pre-
vious works [3, 4]. In the literatures, the number of small
peaks for 1s was determined by the angular frequency of
the forcing term. Meanwhile, in this study, the increment
of small peaks originates from the coupling effect via the
axoplasmic resistance.

Futhermore, the number of small peaks for 1s can be
changed by the value of the angular frequency of forcing
term ω. When we set the parameter ω = 0.57, we are suc-
ceeded in observing the MMO sequences 1s, s = 1, 2, . . . , 5
as shown in Figs. 7 and 8, where the traveling membrane
potential consisting of several distinctive MMO-sequences
exist.
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4. Conclusions

This paper investigated the oscillatory behaviors in the
multi-compertment model where the periodic perturbation
at the left edge of the model was injected. We reported that
the traveling membrane potential consisting of several dis-
tinctive MMO-sequences was observed. In particular, we
were succeeded in observing that the increment of small
peaks originated from the coupling effect via the axoplas-
mic resistance.
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(d) 14.

(e) 15.

Figure 8: Timeseries of x j, j = 5, 12, 20, 27, 32 for ω =
0.57.
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