2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

NOLTR|2D08

Capabilities of Constraint Programming in Rigorous Global Optimization

Michel Rueher'
Alexandre Goldsztejn'™, Yahia Lebbah*' and Claude Michel

TUniversité de Nice Sophia Antipolis, CNRS, 06903 Sophia Antipolis, France,
"HMCNRS, Université de Nantes, 44322 Nantes, France
FUniversité d’Oran Es-Senia B.P. 1524 EL-M’Naouar, 31000 Oran, Algeria
Email: michel.rueher @gmail.com, alexandre.goldsztejn @univ-nantes.fr,ylebbah @ gmail.com,cpjm @ polytech.unice.fr

Abstract—We investigate the capabilities of constraints
programming techniques to boost rigorous global optimiza-
tion methods, and thus, to reduce the gap between efficient
but unsafe systems like Baron', and slow but safe global
optimization approaches. We show how constraint pro-
gramming filtering techniques can be used to implement
optimality-based reduction in a safe and efficient way, and
thus to take advantage of the known bounds of the objective
function to reduce the domain of the variables, and to speed
up the search of a global optimum. We describe an efficient
strategy to compute very accurate approximations of feasi-
ble points. This strategy takes advantage of the Newton
method for under-constrained systems of equations and in-
equalities to compute efficiently a promising upper bound.
Experiments on the COCONUT benchmarks demonstrate
that these different techniques drastically improve the per-
formances.

1. Introduction

We consider here the global optimization problem % to
minimize an objective function under nonlinear equalities
and inequalities,

minimize f(x)
subjectto gi(x) =0, i e {l,...k} (1
hj(x) <0, je({l,.,m}

withxex,f:R" >R, g :R"— Randh; : R" — R;
Functions f , g; and /; are nonlinear and continuously dif-
ferentiable on some vector x of intervals of R. For con-
venience, in the sequel, g(x) (resp. h(x)) will denote the
vector of g;(x) (resp. h;(x)) functions.

The difficulties in such global optimization problems
come mainly from the fact that many local minimizers may
exist but only few of them are global minimizers [7].

Optimality-based reduction (OBR) has been introduced
by Ryoo and Sahinidis in [8] to take advantage of the
known bound of the objective function to reduce the size
of the domains of the variables. This technique uses a well
known property of the saddle point to compute new bounds
for the domain of a variable taking into account the known
bounds of the objective function. However, the basic OBR

ISee http://www.andrew.cmu.edu/user/ns 1 b/baron/baron.html

algorithm is unsafe?

We have show in [10] that constraint programming tech-
niques can be used in a simple and elegant way to safely re-
fute the potential non-solution boxes identified by the OBR
method. Roughly speaking, filtering techniques are used to
reduce these boxes to empty boxes, and thus, to prove that
they do not contain any feasible point. These constraint
programming techniques do not suffer from the same lim-
itations as Kearfott’s method. The first experiments show
that they are also much more efficient.

In global optimization problems the feasible region may

be disconnected. Thus, finding feasible points is a critical
issue in safe Branch and Bound algorithms for continuous
global optimization. Standard strategies use local search
techniques to provide a reasonable approximation of an up-
per bound and try to prove that a feasible solution actually
exists within the box around the guessed global optimum.
Practically, finding a guessed point for which the proof suc-
ceeds is often a very costly process.
In [1] we have introduced a new strategy to compute very
accurate approximations of feasible points. This strat-
egy takes advantage of the Newton method for under-
constrained systems of equations and inequalities. More
precisely, this procedure exploits the optimal solution of
a linear relaxation of the problem to compute efficiently a
promising upper bound. Experiments on the COCONUT
benchmarks demonstrate that the combination of this pro-
cedure with a safe branch and bound algorithm drastically
improves the performances.

The rest of this paper is organized as follows. The first
section provides the overall schema of a safe branch and
bound process for global optimization. The next section
describes the OBR method and introduces our safe imple-
mentation based on constraint techniques. Next, we de-
scribe our new strategy to compute very accurate approxi-
mations of feasible points

We do not recall here the capabilities of consistency
techniques to speed up the initial convergence of the inter-
val narrowing algorithms. Neither do we show how linear
relaxations can be used in such a CP framework to rigor-

2Kearfott [3, 2] has proposed a safe implementation of OBR which
is based on a valid bounding of the dual solution but this method suffers
from strong limitations and is rather slow.

- 601 -

Algorithm 1 Branch and Bound Algorithm
Function BB(IN x, €; OUT S, [L, U])

% S: set of proven feasible points
% f denotes the set of possible values for f in x
% nbS tarts: number of starting points in the first upper-bounding
Le{x}y (L, U)e(=00, +00);
S—UpperBounding(x’, nbS tarts);
while w([L, U]) > e do

x'—x" suchthatf , = min{f , : x" € L}; L—L\ {x);

fo <—min(fxz ,U);

X' «<Prune(x’); f,<LowerBound(x');

S—S8S U UpperBounding(x’, 1);

ifx’ #0 then (x|,x))<Split(x'); L—LU{X],x)};

if £L=0 then (L, U)«(+00,—00)

else (L, U)«(min{f,,, : X" € L}, min{fy : X" € S})

endwhile

ously bound the global optima as well as its location. A
detailed discussion of these concepts and techniques can
be found in [4, 5, 9].

2. The Branch and Bound schema

The algorithms (see Algorithm 1) we describe here are
derived from the well known Branch and Bound schema in-
troduced by Horst and Tuy for finding a global minimizer.
Interval analysis techniques are used to ensure rigorous and
safe computations whereas constraint programming tech-
niques are used to improve the reduction of the feasible
space.

Algorithm 1 computes enclosers for minimizers and safe
bounds of the global minimum value within an initial box
X. Algorithm 1 maintains two lists : a list £ of boxes to
be processed and a list S of proven feasible boxes. It pro-
vides a rigorous encloser [L, U] of the global optimum with
respect to a tolerance e.

Algorithm 1 starts with UpperBounding(x,nbS tarts)
which computes a set of feasible boxes by calling a local
search with nbS tarts starting points and a proof procedure.

The box around the local solution is added to S if it is
proved to contain a feasible point. At this stage, if the
box x’ is empty then, either it does not contain any fea-
sible point or its lower bound f, is greater than the current
upper bound U. If x’ is not empty, the box is split along
one of the variables® of the problem.

In the main loop, Algorithm 1 selects the box with
the lowest lower bound of the objective function. The
Prune function applies filtering techniques to reduce the
size of the box x’. In the framework we have imple-
mented, Prune just uses a 2B-filtering algorithm [6]. Then,
LowerBound(x") computes a rigorous lower bound £, us-
ing a linear programming relaxation of the initial problem.

3Various heuristics are used to select the variable the domain of which
has to be split.

Actually, function LowerBound is based on the lineariza-
tion techniques of the Quad-framework [5]. LowerBound
computes a safe minimizer f, thanks to the techniques in-
troduced by Neumaier et al.

Algorithm 1 maintains the lowest lower bound L of the
remaining boxes £ and the lowest upper bound U of proven
feasible boxes. The algorithm terminates when the space
between U and L becomes smaller than the given tolerance
€.

The next section is devoted to OBR techniques. We first
recall the basic definitions, then we describe the method
proposed by Kearfott, and finally we introduce our safe al-
gorithm for computing OBR.

3. Optimality-based reduction

3.1. Basics of optimality-based reduction

Optimality-based reduction has been introduced by
Ryoo and Sahinidis in [8]. It takes advantage of a property
of the saddle point to reduce the domains of the variables
of the problem to optimize. Optimality-based reduction re-
lies on the following two theorems to improve the bounds
of the domain of one variable:

Theorem 1 Let U be a known upper bound of the original
problem P, let L be a known lower bound of a convex relax-
ation R of P, and assume that the constraint x; — x; < 0 is
active at the optimal solution of R and has a corresponding
multiplier A: > 0. Then

U-L
7

Xi > x; with x; = X; — (2)
Thus, if x > x,, the domain of x; can be set to [x], ;] with-
out loss of any global optima.

A7 denotes the dual solution of R. Roughly speaking, a
constraint A;x; < b; is active if A;x; = b;. This equality may
be difficult to be checked over the floating-point numbers.

Theorem 2 Let U be a known upper bound of the original
problem P, let L be a known lower bound of a convex relax-
ation R of P, and assume that the constraint x; — x; < 0 is
active at the optimal solution of R and has a corresponding
multiplier > > 0. Then

. U-L
X <X withx! =x, +

5t g 3

Thus, if x! < X;, the domain of x; can be set to [x;, x]']
without loss of any global optima.

The first theorem provides a test to improve the lower
bound of the domain of a variable while the second theorem
provides a test to improve the upper bound of the domain
of a variable.

Moreover, these valid inequalities have been generalized
to the other constraints. The following theorem is the most
general one :

- 602 -

Theorem 3 Let U be a known upper bound of the original
problem P, let L be a known lower bound of a convex re-
laxation R of P, and assume that the constraint g;(x) < 0 is
active at the optimal solution of R and has a corresponding
multiplier A: > 0. Then

U-L
T

gi(x) > - “

This last theorem enables to enforce some constraints,
and thus to reduce the domains of the variables.
All these theorems are more detailed and proved in [8].

3.2. A safe implementation of OBR based on constraint
filtering techniques

As said before, the critical issue in the OBR method
comes from the unsafe dual solution provided by the sim-
plex algorithm. In other words, due to the rounding errors,
we may lose the global optima when we use formula (2) to
shrink the domain of some variable x;.

The essential observation is that we can use filtering
techniques to prove that no feasible point exists when the
domain of x; is reduced to [x;, x;]. Indeed, if the constraint
system

fx<U
gix)=0,i=1.k (®)]
gix) <0, j=k+1.m

does not have any solution when the domain of x is set to
[x;, x/], then the domain reduction computed by the OBR
method is valid; if the filtering cannot prove that no solu-
tion exits inside the considered box, we have just to add this
box to L, the list of boxes to be processed (See algorithms
1 and 2).

The same reasoning holds for the reduction of the domain
of f, i.e., when algorithm 2 attempts to reduce the lower
bound of the variables of the problem by means of formula
(3).

Algorithm 2 details the new process of the computation
of the lower bound. Note that Algorithm 1 remains al-
most unchanged : we have just to replace the call £«
LowerBound(x') by (f,, x',L)«LowerBound(x’, L, U,L).

The constraint-based approach introduced here is about
five time faster than Kearfott’s approach. In fact, our ap-
proach introduces a negligible overhead since the proof
process mostly relies on a 2B-consistency which is an ef-
fective technique here*.

The Upper-bounding step (see Algorithm 3) performs a
multistart strategy where a set of nbStarts starting points
are provided to a local optimization solver. The solutions
computed by the local solver are then given to a function
InflateAndProve which uses an existence proof procedure
based on the Borsuk test. However, the proof procedure
may fail to prove the existence of a feasible point within

4That is why the more costly Quad-filtering is almost never used in
these examples.

Algorithm 2 Computation of a safe lower bound with OBR
Function LowerBound(IN x, L, U,L; OUT (f ,,£))

L, 0 % L,: set of potential non-solution boxes
Compute f with Quad in x
for each variable x do

Apply formula 2 of OBR

and add the generated potential non-solution boxes to L,

for each box B; in £, do

B; — 2B-filtering(B;)

if B; = 0 then reduce the domain of x;

else B, — Quad-filtering(B;)

if B = 0 then reduce the domain of x;
else add B’ to £; endif
endif

Apply formula (3) of OBR to reduce the lower bound of the variables

Use 2B-filtering and Quad-filtering to validate the reduction

box x,. The most common source of failure is that the
“guess” provided by the local search lies too far from the
feasible region.

4. A new upper bounding strategy

The standard upper bounding procedure relies on a lo-
cal search to provide a “guessed” feasible point lying in
the neighborhood of a local optima. However, the effects
of floating point computation on the provided local optima
are hard to predict. As a result, the local optima might lie
outside the feasible region and the proof procedure might
fail to build a proven box around this point.

We propose here a new upper bounding strategy which
attempts to take advantage of the solution of a linear outer
approximation of the problem. The lower bound process
uses such an approximation to compute a safe lower bound
of . When the LP is solved, a solution x;p is always com-
puted and, thus, available for free. This solution being an
optimal solution of an outer approximation of P, it lies out-
side the feasible region. Thus, x;p is not a feasible point.
Nevertheless, x;p may be a good starting point to consider
for the following reasons:

e At each iteration, the branch and bound process splits
the domain of the variables. The smaller the box is,
the nearest xp is from the actual optima of P.

e The proof process inflates a box around the initial
guess. This process may compensate the effect of the
distance of x;p from the feasible region.

However, while x;p converges to a feasible point, the pro-
cess might be quite slow. To speed up the upper bound-
ing process, we have introduced a light weight, though
efficient, procedure which compute a feasible point from
a point lying in the neighborhood of the feasible region.
This procedure which is called FeasibilityCorrection will
be detailed in the next subsection.

- 603 -

Algorithm 3 Upper bounding build from the LP optimal
solution xj ,

Function UpperBounding(IN X, x} ,, nbStarts; OUT S’)

% S': list of proven feasible boxes;

% nbS tarts: number of starting points

% Xx; p: the optimal solution of the LP relaxation of $(x)
S« 0; x,, «FeasibilityCorrection(x; ,);

x, <InflateAndProve(x;,,,, X);

ifx, # 0 then S’ 8" Ux,

return &’

Algorithm 3 describes how an upper bound may be build
from the solution of the linear problem used in the lower
bounding procedure.

4.1. Computing pseudo-feasible points

This section introduces an adaptation of the Newton
method to under-constrained systems of equations and in-
equalities which provides very accurate approximations of
feasible points at a low computational cost. When the sys-
tem of equations g(x) = O is under-constrained there is
a manifold of solutions. [(x), the linear approximation’
around x? is still valid in this situation, but the linear sys-
tem of equations /(x) = 0 is now under-constrained, and has
therefore an affine space of solutions. So we have to choose
a solution x) of the linearized equation /(x) = 0 among the
affine space of solutions. As x© is supposed to be an ap-
proximate solution of g(x) = 0, the best choice is certainly
the solution of /(x) = 0 which is the closest to x?. This
solution can easily be computed with the Moore-Penrose
inverse: xV = x@ — A¥(x)g(x?), where A} € R™™ is
the Moore-Penrose inverse of A, € R™", the solution of
the linearized equation which minimizes ||x("' — x@||. Ap-
plying previous relation recursively leads to a sequence of
vectors which converges to a solution close to the initial
approximation, provided that this latter is accurate enough.

The Moore-Penrose inverse can be computed in several
ways: a singular value decomposition can be used, or in
the case where A, has full row rank (which is the case for
Ag(x(o)) if x¥ is non-singular) the Moore-Penrose inverse
can be computed using A} = AT(A,AD)™".

Inequality constraints are changed to equalities by intro-
ducing slack variables: hj(x) < 0 < h;(x) = —siz. So
the Newton method for under-constrained systems of equa-
tions can be applied.

5. Conclusion

Constraint programming filtering techniques can be used
to implement optimality-based reduction in a safe and effi-
cient way. Thanks to constraint programming, the branch

SI(x) = g0y + Jg x©). (x = x9) where Jg is the Jacobian matrix of
g le. Jg,; = 0gi/0x;.

and bound algorithm can take advantage of the OBR
through a simple but efficient refutation process. Prelimi-
nary experiments have shown that our procedure compares
well to the Kearfott’s procedure. Using constraint-based
refutation, OBR is up to five times faster than with Kear-
fott’s procedure. As a result, constraint-based OBR can
significantly improve the branch and bound process.

Constraint-based refutation has allowed a safe embed-
ding of the OBR in a very simple way. This approach seems
to be general enough to be applied to other unsafe methods.
Our next work is thus to test this approach on other unsafe
methods in order to improve the branch and bound process.

To evaluate our new upper bounding strategy we have
performed experiments on a significant set of benchmarks®.
All the benchmarks come from the collection of bench-
marks of the COCONUT project. We have selected 35
benchmarks where Icos succeeds to find the global mini-
mum while relying on an unsafe local search.

We did compare our new upper bounding strategy with
various upper bounding strategies. Our new upper bound-
ing strategy is the best strategy: 31 benchmarks are now
solved within the 30s time out; moreover, almost all bench-
marks are solved in much less time and with a greater
amount of proven solutions. This new strategy improves
drastically the performance of the upper bounding proce-
dure and competes well with a local search.

References

[1] C. M. Alexandre Goldsztejn, Yahia Lebbah and M. Rue-
her. Revisiting the upper bounding process in a safe
branch and bound algorithm. In S. Verlag, editor, Proc.
CP2008, http:/jwww.cs.mu.oz.au/cp2008/, 2008.

[2] R.B. Kearfott. Validated probing with linear relaxations. submitted
to Journal of Global Optimization, 2005.

[3] R. B. Kearfott. Discussion and empirical comparisons of linear re-
laxations and alternate techniques in validated deterministic global
optimization. journal of Optimization Methods and Software, pages
715-731, Oct. 2006.

[4] Y. Lebbah and O. Lhomme. Accelerating filtering techniques for
numeric CSPs. Artificial Intelligence, 139(1):109-132, 2002.

[5] Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J.-P. Merlet. Ef-
ficient and safe global constraints for handling numerical constraint
systems. SIAM Journal on Numerical Analysis, 42(5):2076-2097,
2004.

[6] O. Lhomme. Consistency techniques for numeric CSPs. In Pro-
ceedings of IJCAI’93, pages 232—-238, Chambéry(France), 1993.

[71 A. Neumaier. Complete search in continuous global optimization
and constraint satisfaction. Acta Numerica, 2004.

[8] H.S. Ryoo and N. V. Sahinidis. A branch-and-reduce approach to
global optimization. Journal of Global Optimization, pages 107—
138, 1996.

[9] P. Van-Hentenryck, D. Mc Allester, and D. Kapur. Solving polyno-
mial systems using branch and prune approach. SIAM Journal on
Numerical Analysis, pages 34(2):797-827, 1997.

[10] C. M. Yahia Lebbah and M. Rueher. Using constraint techniques
for a safe and fast implementation of optimality-based reduction. In
ACM, editor, Proceedings of SAC’07, pages 326 — 331, 2007.

%Detailled results can be found in hup:/www.ids.unice.fr/%7Emh/RR/2008/RR-08.1 I-
A.GOLDSZTEIN.1.pdf

- 604 -

	Navigation page
	Session at a glance
	Technical program

