
Discrete Higher Order Inverse Function Delayed Network

Takahiro Sota†, Yoshihiro Hayakawa‡, Shigeo Sato† and Koji Nakajima†

†Research Institute of Electrical Communication, Tohoku University
2-1-1 Katahira, Aoba-ku, Sendai-shi, 980-8577, Japan

‡Sendai National College of Technology
4-16-1 AyashiChuoh, Aoba-ku, Sendai-shi, 989-3128, Japan

Email: sota@nakajima.riec.tohoku.ac.jp, hayakawa@sendai-nct.ac.jp, shigeo@riec.tohoku.ac.jp, hello@riec.tohoku.ac.jp

Abstract—The Inverse function Delayed model (ID
model) is a neuron model that has dynamics effected by
negative resistance. The negative resistance can destabi-
lize local minimum states that are undesirable network re-
sponses. Actually, we have demonstrated that the ID net-
work can perfectly remove all local minima with N-Queen
problems or 4-Color problems where stationary states are
only correct answers. Meanwhile, about the case of Trav-
eling Salesman Problems or Quadratic Assignment Prob-
lems, we also applied the ID network to them with the same
method by introducing quartic-form energy function and
higher order connections.

In this paper, we introduce the discrete ID model with
higher order connections to achieve the hardware imple-
mentation of the network.

1. Introduction

Hopfield et al. proposed a neural network that had dy-
namics of moving along the gradient of the quadratic-form
energy function [1]. This network can find the solutions
of combinatorial optimization problems (COP) by assign-
ing the optimal solution to the global minima of the energy
function. However, the network state is often trapped into
local minima except for the global minima, and it is known
as the local minimum problem.

As an improvement way of this problem, the method
of using the Inverse function Delayed model (ID model)
[2] has been proposed. One of important properties of ID
model is a negative resistance. The region of the negative
resistance is controllable, then the effect of the negative
resistance can destabilize the undesirable local minimum
states of the energy function with appropriate setting. Espe-
cially, N-Queen problems or 4-Color problems are able to
be solved with 100% success rate by using the ID model[3].

Meanwhile, in the case of Traveling Salesman Problems
(TSP) or Quadratic Assignment Problems(QAP), we have
proposed the Higher-order Connection ID model (HC-ID
model) and the quartic-form energy function for these
problems[4]. The HC-ID model is the ID model with the
higher-order synaptic connections, and the HC-ID network
with 3rd-order synaptic connections has a quartic-form en-
ergy function. This network can destabilize only the unde-
sirable local minimum states of TSP or QAP by introducing

the quartic-form energy function. Actually, optimal solu-
tions of some 4-city TSP’s and 4-size QAP’s are obtained
in numerical experiments. However, it is difficult to apply
the HC-ID network with computer simulation to large size
problems because the HC-ID network requires much com-
putation time to update neuron states. Consequently, we
aim to implement the HC-ID network on hardware to avoid
this problem.

In this paper, we introduce the discrete HC-ID network
instead of the continuous HC-ID network to achieve the
hardware implementation. The discrete network is superior
for hardware implementation. We propose the discrete time
network, at first, and then derive the binary output network
from the discrete time network. Finally, we confirm the
expected result by solving a TSP and a QAP numerically.

2. Discrete HC-ID Network

2.1. Continuous HC-ID Network

The continuous type ID model with 3rd order synaptic
connections is described by following equations[4]:

τu
dui

dt
=

N∑
j=1

N∑
k=1

N∑
l=1

wi jkl x j xkxl

+

N∑
j=1

N∑
k=1

wi jk x j xk +

N∑
j=1

wi j x j + hi , (1)

τx
dxi

dt
=ui − g(xi), (2)

whereN is the number of neurons, andui , xi andhi are the
internal state, the output and the bias of neuroni, respec-
tively. wi jk··· is the synaptic weight from neuronsj, k, · · ·
to neuroni. τu andτx(� τu) are the time constants of the
internal state and the output, respectively.

Substituting Eq. (2) into Eq. (1), the following equation
is obtained:

τx
d2xi

dt2
+η(xi)

dxi

dt
= −∂U
∂xi
, (3)
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where

η(xi) =
dg(x)

dx

∣∣∣∣∣
x=xi

, (4)

U = − 1
4τu

∑
i

∑
j

∑
k

∑
l

wi jkl xi x j xkxl

− 1
3τu

∑
i

∑
j

∑
k

wi jk xi x j xk

− 1
2τu

∑
j

wi j xi x j −
1
τu

∑
i

hi . (5)

η(xi) andU denoting a friction coefficient and a potential,
respectively, Equation (3) shows that the HC-ID model op-
erates as the particle in potentialU. Moreover the nega-
tive resistance appears in the area where the gradient of the
function g is negative. These dynamics of HC-ID model
are similar to the normal ID model, except the potentialU
of 3rd HC-ID model is a quartic-form function and there is
no effect of dissipation.

2.2. Derivation of Discrete Time Model

The discrete time HC-ID model can be derived by apply-
ing Euler method to Eqs. (1) and (2). The basic equations
of the discrete time HC-ID model are

ui(t + 1) =ui(t) + T∆

( N∑
j=1

N∑
k=1

N∑
l=1

wi jkl x j(t)xk(t)xl(t)

+

N∑
j=1

N∑
k=1

wi jk x j(t)xk(t) +
N∑

j=1

wi j x j(t) + hi

)
, (6)

xi(t + 1) =xi(t) + T∆
τu
τx

(
ui(t) − g(xi(t))

)
, (7)

where

T∆ = ∆/τu ≤ 1, (8)

and∆ is a time increment.

2.3. Limitation of Output and Inner State

Although the output range of HC-ID model has no lim-
itation normally, the range should be between 0 and 1 to
apply to COP. Hence the discrete time HC-ID model re-
stricts the range of the output as follows when calculating
the next step output:

x(t + 1)

= 0 if x(t + 1) < 0

= 1 if x(t + 1) > 1
. (9)

Moreover, the inner stateu is also limited as follows due to
the output restriction:

u(t + 1) = u(t)

 if x(t) = 0 andu(t + 1) < u(t) < 0

if x(t) = 1 andu(t + 1) > u(t) > 0
.

(10)
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Figure 1: Theg-function used in the binary output model.

2.4. Derivation of Binary Output Model

The output of discrete time HC-ID model becomes bi-
nary values when the parameterτx in Eq. (7) approximates
to 0. The output is obtained as follows under the limitation
of τx → 0:

xi(t + 1) =


1 (ui(t) − g(xi(t)) > 0)

0 (ui(t) − g(xi(t)) < 0)

xi(t) (ui(t) − g(xi(t)) = 0)

. (11)

Moreover, theg-function for binary output is defined by
following equation:

g(x)

≤ α (x = 0)

≥ −α (x = 1)
, (12)

whereα is a positive parameter. Thisg-function no longer
has negative resistance effect, it has only the hysteresis ef-
fect. That effect increases with increasingα. And the out-
put of the binary model is described as follows from Eqs.
(11) and (12):

xi(t + 1) =


1 (ui(t) > α)

0 (ui(t) < −α)
xi(t) otherwise

. (13)

We use this discrete HC-ID model afterward.

2.5. States Stability of Discrete HC-ID Network

Eq. (6) is able to rewrite as Eq. (14) by using the poten-
tial U:

ui(t + 1) =ui(t) − T∆
∂U
∂xi

∣∣∣∣∣
xi=xi (t)

. (14)

Therefore, the inner stateui keeps decreasing if∂U/∂xi is
positive, and finally the outputxi becomes 0. In contrast,
the output becomes 1 eventually if∂U/∂xi is negative.
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3. Applying Quartic Energy Function

3.1. Quartic Energy Function

The quartic energy function for combinatorial optimiza-
tion problems is [4]

E4TH =
A
2

n∑
i=1

( n∑
x=1

xxi − 1
)2

+
A
2

n∑
x=1

( n∑
i=1

xxi − 1
)2

+
B
2

n∑
x=1

n∑
i=1

n∑
y=1

n∑
j=1

bxi,y jxxixy j
(
1− xxixy j

)
+

C
2

( n∑
x=1

n∑
i=1

n∑
y=1

n∑
j=1

bxi,y jxxixy j

)2

, (15)

wheren is the size of a problem andA, B andC are coeffi-
cients that have positive value.bxi,y j ∈ b[N×N] is a cost value
when the neuron (x, i) and (y, j) fire, and the cost matrixb
has to be modified by the applied problem. The first and
second terms of Eq. (15) have minimum value if only one
neuron fires in each row and column, and the third term of
Eq. (15) is minimized when all of output values are 0 or 1.
These three terms express constrained conditions, and they
will be 0 when the conditions are satisfied. Under these
conditions, the fourth term expresses a squared value of
cost shown by the network state.

Moreover, the partial differentiation ofE4TH with respect
to a outputxah is expressed as follows if the constrained
conditions are satisfied:

∂E4TH

∂xah
=

∑
y

∑
j

bah,y jxy j×{
2B

(1
2
− xah

)
+ 2C

∑
z

∑
k

∑
w

∑
l

bzk,wlxzkxwl

}

=


∑

j

bah,yF[y] · 4C
{ B

4C
+ csol(x)

}
(xah = 0)∑

j

bah,yF[y] · 4C
{
− B

4C
+ csol(x)

}
(xah = 1)

, (16)

whereF[y] is the column index of a firing neuron in rowy
and

csol(x) =
1
2

∑
z

∑
w

bzF[z],wF[w] , (17)

that is,csol(x) expresses the cost value obtained by using
the solution represented by network statex. Equation (16)
shows that the sign of∂E4TH/∂xah depends on the relation-
ship between the coefficient B/4C and the cost of solution
csol(x) whenxah = 1. That is to say,∂E4TH/∂xah has nega-
tive value ifB/4C < csol(x) holds, and∂E4TH/∂xah is posi-
tive if B/4C > csol(x) holds.

3.2. Relationship between Network States Stability and
Coefficients of Quartic Energy Function

When the energy function is applied to the HC-ID net-
work, the weight matrix and bias value of the neural net-
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Figure 2: Computation time as a function ofT∆ in a 6-TSP
A = 22.7, B = 1.50,C = 0.10, andα = 400.0.

work are constructed to make the potentialU equal to the
energy function. Hence a condition∂U/∂xi = ∂E4TH/∂xi is
satisfied if the quartic energy function is applied to the HC-
ID network. It means thatxah = 1 is stable if∂E4TH/∂xah is
negative, andxah = 1 is unstable if∂E4TH/∂xah is positive.
Hence only the state whose cost is smaller than the value of
B/4C is stable, according to the discussion of the preceding
section. Consequently we can obtain solutions whose cost
is smaller thanB/4C. The solutions contain both of the
global and local minimum states. The local minimum state
solutions decrease with decreasingB/4C. Finally, only the
global minimum states are stabilized and all local minimum
states are destabilized by using the discrete HC-ID network
when following condition is satisfied:

csol(x0) < B/4C < csol(x1), (18)

wherecsol(x0) andcsol(x1) are the cost value of optimal so-
lution and the 2nd optimal solution, respectively. This con-
dition being the same as the one of continuous[4], therefore
the discrete HC-ID network can solve COP by the same
way as the continuous network.

4. Simulation Result

This section shows the simulation results of 6-city TSP
and 4-size QAP. In these simulation random initial states
are used, and the result is obtained by 48 simulations. The
coefficientA of the energy function is set to satisfy the con-
strained condition, andB/4C is set to satisfy Eq. (18).

4.1. Success Rate and Computation Time Dependency
on ParameterT∆

At first, it is investigated how the computation time de-
pends on the parameterT∆ by numerical experiments of a
6-city TSP. The success rate is always 100% for any value
of T∆, and the variation of computation time is shown in
Fig. 2. The solid circles in Fig. 2 show the average of com-
putation time. This result suggests thatT∆ has no impact to
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Figure 3: Computation Time as a function ofα in a 6-TSP
A = 22.7, B = 1.50,C = 0.10, andT∆ = 1.
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Figure 4: Success Rate as a function ofα in a 4-QAP A =

376.7, B = 4.68,C = 0.10, andT∆ = 1.

the success rate, and the computation time decreases with
increasing the parameterα.

4.2. Success Rate and Computation Time Dependency
on Parameterα

Next, computation time dependency on the parameterα
is investigated. At this timeT∆ is set to 1 from the forego-
ing result. In allα range, the optimal solution is obtained
with 100% success rate. The computation time is shown
as a function ofα in Fig. 3. The computation time takes a
minimum value atα � 400, it is important to set an appro-
priate parameterα for solving COP with smaller iterations
.

4.3. The Result of 4-QAP

Finally, we compare the success rate of the discrete net-
work with that of the continuous network by solving a 4-
size QAP. Figure 4 shows the success rate dependency on
the parameterα in the 4-QAP. It shows that the discrete
HC-ID network can solve the 4-QAP with 100% success
rate at anyα value.

However, in case of using continuous HC-ID network, it

300 310
0

1

O
ut
pu

t

Figure 5: The output of continuous HC-ID network applied
for a 4-QAP A = 376.7, B = 4.68, C = 0.10. One cell shows the

output of one neuron.

is not always that the network state reaches to global min-
imum states of the QAP [4]. Figure 5 shows the output of
continuous HC-ID network applied for a 4-QAP. It shows
the local minimum states of a 4-QAP. If the effects of nega-
tive resistance is small, the continuous HC-ID network of-
ten cannot reach the global minimum states because the
output of firing neuron oscillate aroundx = 1 as shown
in Fig. 5. The output of discrete HC-ID network, mean-
while, does not take intermediate value between 0 and 1,
consequently the discrete HC-ID network can avoid the os-
cillation state with anyα.

5. Conclusion

We introduced the discrete HC-ID model instead of the
continuous HC-ID model to achieve the hardware imple-
mentation. The introduced model operate in discrete time,
and the output of neurons are binary. Moreover, we showed
analytically that the only optimal solution states are ob-
tained by using the discrete HC-ID network with the energy
function similar to the continuous HC-ID network. Finally,
we applied the discrete HC-ID network to solving a 6-TSP
and a 4-QAP in numerical experiments.
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