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Abstract—The Inverse function Delayed model (ID the quartic-form energy function. Actually, optimal solu-
model) is a neuron model that has dynamifeaed by tions of some 4-city TSP’s and 4-size QAP’s are obtained
negative resistance. The negative resistance can destabinumerical experiments. However, it idliftult to apply
lize local minimum states that are undesirable network réhe HC-ID network with computer simulation to large size
sponses. Actually, we have demonstrated that the ID ngiroblems because the HC-ID network requires much com-
work can perfectly remove all local minima with N-Queenputation time to update neuron states. Consequently, we
problems or 4-Color problems where stationary states agém to implement the HC-ID network on hardware to avoid
only correct answers. Meanwhile, about the case of Travhis problem.

eling Salesman Problems or Quadratic Assignment Prob-|n this paper, we introduce the discrete HC-ID network
lems, we also applied the ID network to them with the samgstead of the continuous HC-ID network to achieve the
method by introducing quartic-form energy function anchardware implementation. The discrete network is superior
higher order connections. for hardware implementation. We propose the discrete time
In this paper, we introduce the discrete ID model withetwork, at first, and then derive the binary output network
higher order connections to achieve the hardware implgom the discrete time network. Finally, we confirm the
mentation of the network. expected result by solving a TSP and a QAP numerically.

1. Introduction

Hopfield et al. proposed a neural network that had dy%' Discrete HC-ID Network

namics of moving along the gradient of the quadratic-form )
energy function [1]. This network can find the solutionsz'l' Continuous HC-ID Network
of combinatorial optimization problems (COP) by assign-
ing the optimal solution to the global minima of the energy
function. However, the network state is often trapped intS
local minima except for the global minima, and it is known
as the local minimum problem. duy
As an improvement way of this problem, the method T”H
of using the Inverse function Delayed model (ID model)
[2] has been proposed. One of important properties of ID
model is a negative resistance. The region of the negative
resistance is controllable, then th&eet of the negative dx
resistance can destabilize the undesirable local minimum TX_X =U; — g(x), )
states of the energy function with appropriate setting. Espe- dt
cially, N-Queen problems or 4-Color problems are able to
be solved with 100% success rate by using the ID model[3;[”\./ternal state. the outout and the bias of NEUrAESHEC-
Meanwhile, in the case of Traveling Salesman Problen}s | S th P i ioht f " p
(TSP) or Quadratic Assignment Problems(QAP), we have €Y Wijc- 1S the synaptic weignt from neurorjsk,
proposed the Higher-order Connection ID model (HC-| 0 neuroni. 7, andry(< 1) are the tw_ne constants of the
model) and the quartic-form energy function for thesénternal 'staFe and the gutput, respectively. . i
problems[4]. The HC-ID model is the ID model with the ~Substituting Eq. (2) into Eq. (1), the following equation
higher-order synaptic connections, and the HC-ID networ obtained:
with 3rd-order synaptic connections has a quartic-form en-
ergy function. This network can destabilize only the unde-
sirable local minimum states of TSP or QAP by introducing

The continuous type ID model with 3rd order synaptic
onnections is described by following equations[4]:
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n(x) andU denoting a friction cofficient and a potential, Figure 1: Theg-function used in the binary output model.
respectively, Equation (3) shows that the HC-ID model op-
erates as the particle in potentldl Moreover the nega-
tive resistance appears in the area where the gradient of A .

function g is negative. These dynamics of HC-ID modelrﬁ]'%" Derivation of Binary Output Model

are similar to the normal ID model, except the poteritlal  The output of discrete time HC-ID model becomes bi-
of 3rd HC-ID model is a quartic-form function and there iSnary values when the paramef@rin Eq. (7) approximates

no fect of dissipation. to 0. The output is obtained as follows under the limitation
of ry — O:
2.2. Derivation of Discrete Time Model
The discrete time HC-ID model can be derived by apply- 1 () -gx() > 0)
ing Euler method to Egs. (1) and (2). The basic equations X(t+1)=<0 Ui (t) — g(xi(t)) < 0). (12)
of the discrete time HC-ID model are x®)  (Ui(t) = g(x(t) = 0)
N N N
ui(t + 1) =u;(t) +TA( Z Wijia Xj (D)% (£)xi (t) Moreover, theg-function for binary output is defined by
j=1 k=1 I=1 following equation:
N N N
+ Zwijkxj(t)xk(t)+2ijxj(t)+hi), (6) <a (x=0)
L = 9091 0 k=1 (12)
X(t+ 1) =% + Ta(u® - 9x()), ™ N —_
Tx whereq is a positive parameter. Thisfunction no longer
where has negative resistancffext, it has only the hysteresis ef-
fect. That éect increases with increasiag And the out-
Ta=A/ry <1, (8) put of the binary model is described as follows from Eqgs.

) o (11) and (12):
andA is a time increment.

1 Uit) > a)
x(t+1)=<0 Ui (t) < —a) . (13)
x(t) otherwise

2.3. Limitation of Output and Inner State

Although the output range of HC-ID model has no lim-
itation normally, the range should be between 0 and 1 to
apply to COP. Hence the discrete time HC-ID model reys se this discrete HC-ID model afterward.
stricts the range of the output as follows when calculating
the next step output:

2.5. States Stability of Discrete HC-ID Network

=0 ifxt+1)<0 . . ;
X(t+1) . . 9) Eq. (6) is able to rewrite as Eq. (14) by using the poten-
=1 ifxt+1)>1 : )
tial U:
Moreover, the inner stateis also limited as follows due to 5U
the output restriction: Uit + 1) =ui(t) - Ta— . (14)
9% I=x(t)

if x(t) =0andu(t+1)<u(t) <0

if X(t) = 1 andu(t + 1) > u() > 0" Therefore, the inner statg keeps decreasing #U/dx; is

positive, and finally the output becomes 0. In contrast,
(10)  the output becomes 1 eventuallyif)/0x; is negative.

ut+1) = u(t) {
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3. Applying Quartic Energy Function g 10°
3.1. Quartic Energy Function g 1 L
The quartic energy function for combinatorial optimiza- ©
tion problems is [4] E 15t
c
AL 2 AQ(v 2 2
Eath = 2 Z(Z Xxi — 1) + 2 Z(Z Xxi — 1) 8 10t}
i=1 x=1 x=1i=1 a
B & & g 108 L . .
3 Z Z By i XxiXyj(1 — XxiXy ) &} 001 01 1
x=1 i=1 y=1 j=1 Ty
C n n n n 2
" E(le S 4 in’ijXiij) ’ (15) Figure 2: Computation time as a function®f in a 6-TSP

A=227,B=150,C = 0.10, ande = 4000.
wheren is the size of a problem anid B andC are codi-
cients that have positive valubyy; € ™ is a cost value

when the neuronx(i) and §, j) fire, and the cost matrik K d ke th Bkaual o th
has to be modified by the applied problem. The first an§0rk are constructed to make the potentiabqual to the

second terms of Eq. (15) have minimum value if only on&"¢'9Y function. Hence a conditiot)/9x; = 6E4tn/0X; is

neuron fires in each row and column, and the third term o?atisfied if the quartic energy f“F‘C“O” s ;_ipplied to th(_a HC-
Eq. (15) is minimized when all of output values are 0 or 11D network. [t means thata, = 1is stable 0E4+/0%an IS

These three terms express constrained conditions, and t ative, andan = 1 is unstable iBErn/0%an is positive.

will be 0 when the conditions are satisfied. Under thesg nce only the state vyhose cost js sma'llerthan the valug of
conditions, the fourth term expresses a squared value @{4C is stable, according to the discussion of the preceding
cost shown by the network state section. Consequently we can obtain solutions whose cost

Moreover, the partial dierentiation ofE,ry; with respect is smaller thanB/4C. The solutions contain both of the

to @ outputxay is expressed as follows if the constrainec9|°b"’_‘| and local m|n|mum states. The Iogal minimum state
conditions are satisfied: solutions decrease with decreasBIC. Finally, only the

global minimum states are stabilized and all local minimum

OBath _ Z Z BanyjXyjX states are destabilized by using the discrete HC-ID network
9%an i when following condition is satisfied:
1
{ZB(E - Xah) +2C Z Z Z Z bzkwlxzkxwl} Csol(X0) < B/AC < Csoi(X1), (18)
z k w |
B : wherecsq(Xg) andcso(X1) are the cost value of optimal so-
Z Panyry) - 4C {E + Csol(x)} (Xan = 0) lution and the 2nd optimal solution, respectively. This con-
={/ B , (16) dition being the same as the one of continuous[4], therefore
Z banyrry) - 4C {—I + Csol(x)} (Xan = 1) the discrete HC-ID network can solve COP by the same
i

way as the continuous network.
whereF[y] is the column index of a firing neuron in royw
and 4. Simulation Result

Csol(X) = % Z Z B2Fi2.wrw] - 17) This section shows the simulation results of 6-city TSP
zw and 4-size QAP. In these simulation random initial states

that is, csoi(X) expresses the cost value obtained by usingre used, and the result is obtained by 48 simulations. The
the solution represented by network stateEquation (16) codficientA of the energy function is set to satisfy the con-
shows that the sign @fE4H/0%an depends on the relation- strained condition, anB/4C is set to satisfy Eq. (18).
ship between the céigcient B/4C and the cost of solution
Csol(X) Whenxa, = 1. That is to saydEsrh/0Xan has nega- 4.1. Success Rate and Computation Time Dependency
tive value ifB/4C < cso((X) holds, anEstr/0%an iS posi- on ParameterT,

tive if B/4C > Cso(X) holds. At first, it is investigated how the computation time de-

d pends on the paramet&f by numerical experiments of a
6-city TSP. The success rate is always 100% for any value
of T, and the variation of computation time is shown in
When the energy function is applied to the HC-ID net¥Fig. 2. The solid circles in Fig. 2 show the average of com-

work, the weight matrix and bias value of the neural netputation time. This result suggests tAathas no impact to

3.2. Relationship between Network States Stability an
Codfficients of Quartic Energy Function
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Figure 5: The output of continuous HC-ID network applied
for a 4-QAP A = 3767, B = 4.68,C = 0.10. One cell shows the
output of one neuron.

Figure 3: Computation Time as a functionofn a 6-TSP
A=227,B=150,C = 0.10, andT, = 1.

100 f--- : ,
— is not always that the network state reaches to global min-
S g0t 1 imum states of the QAP [4]. Figure 5 shows the output of
%'; continuous HC-ID network applied for a 4-QAP. It shows
@ 60T the local minimum states of a 4-QAP. If thffects of nega-
Q a0l | tive resistance is small, the continuous HC-ID network of-
§ ten cannot reach the global minimum states because the
w 207t 1 output of firing neuron oscillate around = 1 as shown
0 , , , in Fig. 5. The output of discrete HC-ID network, mean-
0 5 10 15 20 while, does not take intermediate value between 0 and 1,
o consequently the discrete HC-ID network can avoid the os-

cillation state with anyr.
Figure 4: Success Rate as a functiorvdh a 4-QAP A =
3767, B= 468,C = 010, andTA =1. 5 Conclusu)n

We introduced the discrete HC-ID model instead of the
the success rate, and the computation time decreases wﬁrﬁéﬁtinqous HC_I.D model to achieve the h_ardv_vare imple—
. . ’ ntation. The introduced model operate in discrete time,
increasing the parameter and the output of neurons are binary. Moreover, we showed

i i analytically that the only optimal solution states are ob-
4.2. Success Rate and Computation Time Dependency ined by using the discrete HC-ID network with the energy
on Parametere function similar to the continuous HC-ID network. Finally,

Next, computation time dependency on the parameter'V€ applied the discrete HC-ID network to solving a 6-TSP
is investigated. At this tim@, is set to 1 from the forego- and & 4-QAP in numerical experiments.
ing result. In alle range, the optimal solution is obtained
with 100% success rate. The computation time is shown References
as a function o in Fig. 3. The computation time takes a[1] J. J. Hopfield and D. W. Tank, ““neural” computation of deci-

ml_nlmum value atr = 400_’ Itis |mpor_tant to set gn aPpro' sions in optimal problems'Biol. Cybern, vol. 52, pp. 141-
priate parameter for solving COP with smaller iterations 155 19gs5.

[2] K. Nakajima and Y. Hayakawa, “Characteristics of in-
verse function delayed model for neural computatid?rgc.
4.3. The Result of 4-QAP NOLTA'02 pp. 861-864, 2002.

Finally, we compare the success rate of the discrete nd#l Y- Hayakawa and K. Nakajima, “Design of the inverse func-
work with that of the continuous network by solving a 4-  tion delayed neural network for solving combinatorial op-
size QAP. Figure 4 shows the success rate dependency on '\[/I:)T:IZ;\IIOnno p2r°b|er2§ 4555 ZT(;TSS' on Neural Networks
the parametew in the 4-QAP. It shows that the discrete - 25 10- 5, pp- ' o . ]
HC-ID network can solve the 4-QAP with 100% succes§ T- Sota, Y. Hayakawa and K. Nakajima, “The quartic form
rate at anyr value energy function for general combinatorial optimization prob-

. . . . lems”, Proc. NOLTA'O . 527-530, 2009.
However, in case of using continuous HC-ID network, it 9pp
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