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Abstract—Complex phenomena are ubiquitous in
the real world and these phenomena are often observed
as marked point process, for example, transactions in
stock markets, seismic events, neural systems, and so
on. To investigate possible nonlinear dynamics that
produce such complex phenomena, one of the impor-
tant tasks is to understand how dynamic systems are
connected. In this paper, we propose a method for re-
constructing connectivity of nonlinear dynamical sys-
tems by transforming marked point processes to con-
tinuous time series.

1. Introduction

Interactions between nonlinear dynamical systems of-
ten produce complicated behavior. Such complicated
behavior usually depend on connectivity in networks,
that is, network topology. Thus, to analyze, model or
predict complicated behavior produced from the net-
works, it is inevitable and essential to understand the
network structures as well as the nonlinear dynamics.

Although it is not so easy to investigate the inter-
actions directly, recent developments in measurement
technologies makes it possible to observe multivariate
time series data. Then, it is possible to estimate the
network topology through the multivariate time series
data.

If an observed time series is continuous and smooth,
and sampled by a fixed interval, the network structure
can be estimated through statistical measures [1–3] ap-
plied to the continuous time series. However, the non-
linear dynamical systems are often observed as event
sequences, and it is difficult for us to directly apply the
conventional statistical measures [1–3] to such event
sequences. Then, it is an important issue to develop
a method to estimate network structures in case that
event sequences are observed. To resolve this issue,
we have already proposed methods of estimating net-
work structures only from the event sequences [4,5]. In
Refs. [4, 5], we have treated observed event sequences
as a point process, which means that the observed
event sequences only have event timings. However,
in the real world, additional information with event

sequences can be essential for several phenomena, for
example, financial systems and seismic events. Such
sequences are often referred as a marked point pro-
cess. If we use not only the information of the event
timing but also the additional information, we can es-
timate more precisely the network structures. How-
ever, it is not so easy to treat such marked point pro-
cesses directly. Then, in this paper, we proposed a
method for transforming a marked point process data
into a continuous time series to analyze such event
sequences. After transforming the marked point pro-
cesses into continuous time series, we applied the par-
tialization analysis to the transformed continuous time
series and estimated connectivity of nonlinear dynam-
ical systems. We used two mathematical models: the
coupled Rössler systems [6] and the coupled Lorenz
systems [7].

2. Method

We used a kernel density estimator for transforming
an event sequence into a continuous time series. To
apply this method to a marked point process data,
we modified the kernel density estimator by using
the additional information. Let us define the lth
event timing of the ith marked point process data as
tli(l = 1, 2, . . . , N), and the additional information at
tli as h(tli). Then, we use the following equations to
transform the marked point process data h(tli) into
the continuous time series fi(t):

fi(t) =

N
∑

l=1,

t−T

2
≤tl

i
≤t+ T

2

K
( t − tli

T

)

h(tli), (1)

K(t) =
1

2
(1 + cos 2πt), (2)

where T is the bandwidth and K(t) is the Hanning
window function. Statistical characteristics of the
transformed time series depend on the bandwidth T .
Thus, it is important to decide the bandwidth T ap-
propriately. In the simulations, we set the band-
width when the correlation coefficient takes the highest
value.
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Figure 1: Mutual information I(X,Y ) is surrounded
region by red. Partial mutual information I(X,Y |Z)
is pink region.

Figure 2: Coupling structures: (a) true structure and
(b) misestimated results for the coupling structure by
the mutual information.

(a) (b)

To estimate the connectivity, we applied the par-
tial mutual information analysis to the transformed
continuous time series. The mutual information is a
measure which identifies nonlinear statistical depen-
dencies. The mutual information I between two vari-
ables X and Y is described by:

I(X,Y ) = H(X) + H(Y ) − H(X,Y ), (3)

where H(X) is the marginal entropy of X, H(X,Y )
is the joint entropy between X and Y . However, the
mutual information can be spuriously biased if two
elements are indirectly connected. Partial mutual in-
formation is effective to remove such spurious bias [3].
The partial mutual information I(X,Y |Z) is given by:

I(X,Y |Z) = H(X,Z) + H(Y,Z)

−H(X,Y,Z) − H(Z). (4)

Namely, the partial mutual information I(X,Y |Z) is
the mutual information I(X,Y ) from which the effect
of Z is removed (Fig. 1).

3. Simulations

To confirm the effectiveness of our method, we pro-
duced marked point process data from nonlinear dy-
namical systems.

3.1. Coupled Rössler Systems

The three coupled Rössler systems [6] are described by
the following equations:















ẋi = −ωiyi − zi +
∑

i6=j kij(xj − xi)

+σiηi,
ẏi = ωixi + ayi,
żi = b + xizi − czi,

(5)

with i, j = 1, 2, 3. We set the parameters a = 0.15, b =
0.2, c = 10, ω1 = 1.03, ω2 = 1.01 and ω3 = 0.99. These
parameters lead to chaotic behavior of the systems.
The term σiηi is noise. We set σi = 1.5 and ηi is Gaus-
sian random number with a mean value and standard
deviation of zero and unity, respectively. The coupling
strengths are set to k12 = k21 = k23 = k32 = 0.2 and
k13 = k31 = 0. The coupling structure of the systems
is shown in Fig. 2(a). We defined the lth event timing
tli as the time when |xi(t)| takes the lth local maxima
and the amplitude of the lth event as |xi(t

l
i)|.

3.2. Coupled Lorenz Systems

In the coupled Lorenz systems, we consider the delays
and unidirectional network. The three coupled Lorenz
systems [7] are described by the following equations:















ẋi(t) = −ρxi(t) + ρyi(t),
ẏi(t) = −xi(t)zi(t) + rxi(t) − yi(t)

+
∑

j 6=i kijy
2
j (t − τij),

żi(t) = xi(t)yi(t) − bzi(t),

(6)

with i, j = 1, 2, 3. We set the parameters ρ = 10, r =
28, and b = 8/3 yielding a chaotic behavior. The cou-
pling strengths are set to k12 = k23 = 0.8 and kij = 0
otherwise. The coupling structure of the systems is
shown in Fig. 2(a). The delays are set to τ12 = 5 and
τ23 = 15 time steps. We defined the lth event timing
tli as the time when |yi(t)| takes the lth local maxima
and the amplitude of the lth event as |yi(t

l
i)|.

4. Results

First, we estimated the connectivity of systems only
from event timings (we set h(tli) = 1 for i = 1, 2, 3
and l = 1, 2, · · · , N). We show the results of the cross
mutual information (Figs. 3 (a)–(c) and 5 (a)–(c))
and partial mutual information (Figs. 3 (d)–(f) and 5
(d)–(f)). From the results, it is difficult to detect cou-
pling because no peaks are found. In contrast, if we
use not only event timings tli but also the additional
information h(tli), the results show clear peaks (Figs.
4 and 6). From the results of the cross mutual infor-
mation (Figs. 4 (a)–(c) and 6 (a)–(c)), we can identify
sharp peaks. These results indicate the connectivity
of the coupled Lorenz systems as Fig. 2(b). However,
the connectivity between the systems 1 and 3 is mis-
estimated because of a spurious bias. To remove the
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Figure 3: Averaged mutual information for 20 trials: (a) I(f1, f2), (b) I(f1, f3) and (c) I(f2, f3), and averaged
partial mutual information for 20 trials: (d) I(f1, f2|f3), (e) I(f1, f3|f2) and (f) I(f2, f3|f1) when we use only
event timings tli for the coupled Rössler systems.
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Figure 4: Averaged mutual information for 20 trials: (a) I(f1, f2), (b) I(f1, f3) and (c) I(f2, f3). Averaged
partial mutual information for 20 trials: (d) I(f1, f2|f3), (e) I(f1, f3|f2) and (f) I(f2, f3|f1) when we use not
only event timings tli but also the amplitude information h(tli) for the coupled Rössler systems.

(a)

(d)

(b)

(e)

(c)

(f)

spurious bias, we used the partial mutual information.
In Figs. 4(d)–(f) and 6(d)–(f), we show the results of
the partial mutual information. The results shown in
Figs. 4(e) and 6(e) indicate that no connection exists
between the systems 1 and 3. These results indicate
that we can estimate the connectivity of the systems as
Fig. 2(a) which is the true connectivity of the systems.
In addition, we can clearly identify the delays τ12 = 5
and τ23 = 15 (Fig. 6(d)–(f)), because the peaks occur
at these values.

5. Conclusion

In this paper, we proposed a new method for estimat-
ing connectivity of nonlinear dynamical systems from
a marked point process. First, we transformed the
marked point process data to continuous time series
by the proposed method which is based on a kernel
density estimator. Then, we applied the partialization
analysis to the transformed time series. As a result,
we can estimate the connectivity of the coupled Rössler
systems and the coupled Lorenz systems.

As a future work, we have to optimize how to de-
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Figure 5: Averaged mutual information for 20 trials: (a) I(f1, f2), (b) I(f1, f3) and (c) I(f2, f3) and averaged
partial mutual information for 20 trials: (d) I(f1, f2|f3), (e) I(f1, f3|f2) and (f) I(f2, f3|f1) when we use only
event timings tli for the coupled Lorenz systems.
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Figure 6: Averaged mutual information for 20 trials: (a) I(f1, f2), (b) I(f1, f3) and (c) I(f2, f3), and averaged
partial mutual information for 20 trials: (d) I(f1, f2|f3), (e) I(f1, f3|f2) and (f) I(f2, f3|f1) when we use not
only event timings tli but also the amplitude information h(tli) for the coupled Lorenz systems.
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cide the bandwidth T only from observed marked point
process data. Information of inter-spike interval dis-
tribution of event sequences and its related statistics
could be important information to optimize the band-
width.
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