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Abstract—This paper studies a novel classification sys-
tem with unsupervised learning. First, the adaptive reso-
nance theory map is used to make categories for input sate.
After that the learning vector quantization decides the cat-
egory borders. In elementary classification problems, algo-
rithm works better as the problem complexity increases.

1. Introduction

Learning vector quantization (LVQ) is a simple and
universal classification algorithm [1] [2]. The LVQ re-
lates deeply to self-organizing maps: depending of prob-
lem complexity, the LVQ can realize flexible classification
function that is impossible linear algorithm such as regres-
sion analysis and is suitable for many applications. How-
ever, the LVQ is a supervised learning algorithm and can
not work for data set without category information of each
teacher signal. If we can add labeling function to the LVQ,
the performance and flexibility of the LVQ can be improved
further.

This paper considers collaboration of adaptive resonance
theory map (ART) and LVQ , where the ART plays to
make categories to help the LVQ. We add a little improve-
ment to the ART, and, after the ART subroutine, the LVQ
tries to improve the classification and decides the category
borders in the feature space. The ART-LVQ can operate
as classification system with unsupervised learning. As is
well known, the ART is flexible unsupervised learning al-
gorithm with many applications [3]-[5]. In our previous
works, the ART has been used effectively to classify in-
put space for parallel processing and have contributed to
improve performance of Self-Organizing Maps (SOM) and
ant colony optimizers (ACO) [6]-[8].

In order to consider the algorithm performance, we ap-
ply the ART-LVQ algorithm to elementary classification
problems. The basic numerical results suggest that (1) the
ART-alone is sufficient for simple classification problems
and (2) classification function of ART-LVQ becomes bet-
ter as the problem complexity increases. The ART-LVQ
is novel and can be developed into efficient unsupervised
learning system for classification problems. Also the ART-
LVQ may help parallel processing of many algorithms in-
cluding SOM and ACO.

2. Algorithm

Our classification system consists of an improved ver-
sion of adaptive resonance theory map (IART) and LVQ.
As a set of input data is given, the IART subroutine makes
category information and the LVQ subroutine makes bor-
ders of the input space.

2.1. IART for labeling

Let the input data consist of N pieces of 2-dimensional
points (xi, yi), i = 1 ∼ N. In the IART, the i-th category at
discrete time t is characterized by a circle at center (xi, yi)
with radius ri:

Wi(t) = (xi(t), yi(t), ri(t)), i = 1 ∼ Nc(t)

where Nc(t) is the number of categories at time t. The IART
subroutine is defined in the following 6 steps.

Step 1 (Initialization): Let t = 0, Nc(t) = 1, ri(t) = 0
and let (xi(t), yi(t)) be selected randomly from some two-
dimensional distribution P(x, y).

Step 2 (Selection): An input (X,Y) is selected randomly
from P(X,Y). If the input belongs to some category then
goto Step 5, otherwise we find the closest category to the
input.

Wc(t) = (xc(t), yc(t), rc(t))

Tc = mini(Ti(X,Y)), Ti(X,Y)
=
√

(X − xi(t))2 + (Y − yi(t))2 − K × ri(t)

Tc ≡
√

(X − xc(t))2 + (Y − yc(t))2 − K × rc(t)

(1)

where Ti is the choice function of the i-th category. −1 ≤
K ≤ 1 is the distance parameter that is a key to control the
number of categories as suggested in Fig. 1. If Tc > γ then
goto Step 3 where γ ∈ [0, 1] is the vigilance parameter. If
Tc ≤ γ then goto Step 4.

Step 3 (Birth of a new category): A new category is born at
position of the input (X,Y) ≡ Pj as shown in Fig. 2(a) and
Nc(t) = Nc(t) + 1. The radius of the new category is zero
and the suffix Nc(t) is assigned to the new category.

WNc(t) = (xNc(t), yNc(t), 0) (2)
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Figure 1: Choice function.

1)( 
tj NWP

)(a

0

1

y

1x

1)( 
tj NWP 1)( 
tj NWP

)(a

0

1

y

1x

)(tcW
jP

)(b )(tcW
jP

)(tcW
jP

)(b

Figure 2: Learning algorithm. (a) Birth of a new category.
(b) Category enlargement.

Step 4 (Category enlargement): The selected category
Wc(t) is enlarged such that the input (X,Y) is included in
the border as shown in Fig. 2(b) and goto Step 5.

Step 5 (Iteration update): Let t = t + 1. Goto Step 2 and
repeat until the time t = N where N is the number of inputs.
At time t = N, the Nc(t) ≡ Nc is declared as the number of
categories.

Step 6 (Clean-up): If plural categories are overlapped then
the overlapped region is divided by lines through the in-
tersections. Using this division line, we can recognize the
data category easily. This step does not exist in our previ-
ous work [8].

2.2. LVQ for border decision

In the LVQ, a weight vector wi corresponds to a category
and is updated depending on input data. Let wi(t) = (xi, yi)
be the weight vector at position (xi, yi) at discrete time t and
let Nc be the number of categories: i = 1 ∼ Nc. The LVQ
is defined by the following 5 steps.

Step 1 (Initialization): Let the center (xi, yi) of the i-th cat-
egory Wi(t) of ART be changed into the position of the i-th
weight vector wi(t) ≡ (xi, yi). Let t = 0.

Step 2 (Input): An input (X,Y) ≡ Pt is applied. We select
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Figure 3: Learning algorithm. (a) input. (b) Decition bor-
der.

the category wc(t) that is the closest to the input:

wc(t) = mini(wi(t) − Pt). (3)

Step 3 (Update of category): The selected category wc(t) is
updated as the following:

wc(t)(new) =

{
wc(t)(old) + at(Pj − wc(t)(old)), (wc(t) = wt)
wc(t)(old) − at(Pj − wc(t)(old)), (wc(t) � wt)

(4)
where wt is the category of the input given by the IART.
at ∈ [0, 1] is a learning parameter that is linearly monotone
decreasing for time t:

at = −a0(t/ttotal − 1)

where 0 < a0 < 1 is a positive parameter and ttotal is a total
number of learning iterations.

Step 4 (Border decision): Let t = t + 1, goto Step 2 and re-
peat until the maximum time limit ttmax. At time t = ttmax,
the borders of categories are decided by perpendicular bi-
sector of the category position as shown in Fig. 3.

Step 5 (Category reassignment): If the LVQ-based cate-
gory is different from the ART-based category, the LVQ-
based category is to be valid.

3. Numerical Experiments

In order to consider the classification function, we apply
the ART-LVQ algorithm to elementary problems whose the
input space is given by union of three Gaussian distribu-
tions: Ni(μ1, μ2;σ2

1, σ
2
2), i = 1 ∼ 3 where μ and σ is the

mean and the standard deviation, respectively. In the ex-
periments, we have used the following two problems based
on three Gaussians (Nc = 3) as shown in Fig. 4(a):

P1 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N1(0.4, 0.55; 0.12, 0.12)
N2(0.5, 0.2; 0.12, 0.12)
N3(0.75, 0.45; 0.12, 0.12)

P2 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N1(0.4, 0.55; 0.12, 0.12)
N2(0.5, 0.2; 0.082, 0.082)
N3(0.75, 0.45; 0.122, 0.122)

(5)

- 612 -



y

1

1x0

 a

y

1

1x0

 a  b

Figure 4: An example of P2. (a) Input data for IART (N =
100). (b) Classification results.

3.1. Categories extraction by IART

In the numerical experiments, the parameters are fixed
after trial-and-errors:

γ = 0.35, K = 0

Fig. 4(b) shows an example of results for P2. 100 inputs
are selected randomly from N1 ∪ N2 ∪ N3 and are applied
to the IART. The IART has succeeded to extract three cat-
egories. In order to evaluate such results, we introduce two
measures. The first one is the coincidence rate of the ART-
based category with the right answer:

CR1 =
# input data with correct category for ART

# input data
(6)

The second one is the extraction rate of the categories:

CR2 =
# categories extracted by ART

# categories
(7)

Table 1 summarizes the results where CR1 is given in av-
erage, min and max for 37 trials where the 3 categories are
extracted. CR2 is calculated for tmax trials. We can see that
the case N = 100 gives the best CR2 for both P1 and P2.
It suggests that over-learning disturbs category extraction
ability. The case N = 500 gives the best CR1 in average:
this CR1 is a criterion to consider the ART-LVQ function.
It should be noted that the three Gaussian functions overlap
to each other and higher CR1 is hard even if the classifica-
tion is optimal.

3.2. Categories extraction by ART-LVQ

The parameters are fixed after trial-and-errors:

γ = 0.35, K = 0, a0 = 0.6, ttotal = 103

Fig. 5 shows an example of results for P2. Here we intro-
duce the third measure that is the coincidence rate of the
ART-LVQ-based category with the right answer:

CR3 =
# input data with correct category for ART-LVQ

# input data
(8)

Table 1: Results of IART.

N CR1avg CR1min CR1max CR2
100 58.0 5.0 91.0 76.9

P1 300 69.7 5.0 91.7 36.3
500 68.4 9.4 90.4 7.4
100 55.4 12.0 90.0 79.0

P2 300 56.6 6.7 90.7 69.0
500 60.8 6.8 90.6 50.2

Figure 5: An example result of ART-LVQ for N = 100 and
P2. The broken line is the correct border and the solid line
is the boder by the ART-LVQ. The difference between two
borders is measured by CR3.

Fig. 6 and Fig. 7 show dependence of CR3 on learning time
t of the LVQ. In P1, t = tmax is sufficient to give good value
of CR3. In P2, t = N is sufficient to give good value of CR3
The table 2 summarizes the results. CR3 are calculated for
37 trials of three categories by IART. In P1, N = 300 gives
the best CR3 in average. In P2, N = 500 gives the best
CR3 in average, however, N = 100 can realize reasonable
improvement of CR3 for ART. It may suggest that the ART-
LVQ can realize faster classification for P2 that is harder
problem than P1.

4. Conclusions

We have presented the ART-LVQ algorithm that can re-
alize unsupervised learning for classification. Performing
elementary numerical experiment, the algorithm perfor-
mance has been considered. We can suggest the following.

(1) The IART can play good classification performance
for simple problems such as P1. However, over-learning
may reduce the performance.

(2) The ART-LVQ is effective in the case of relatively
complex problems such as P2. Also, fast classification is
possible in that case.

Future problems are many, including the following: find-
ing optimal algorithm parameter values, analysis of the
learning process, and application to practical problems.
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Figure 6: Time-dependence of CR1 for P1.
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Figure 7: Time-dependence of CR3 for P2.

Table 2: Learning result CR3 of ART-LVQ. Repeat until
the time tmax = N.

N CR3avg CR3min CR3max

100 57.5 1.0 88.0
P1 300 71.2 3.3 92.0

500 69.2 5.8 91.8
100 56.3 1.0 91.0

P2 300 56.8 5.0 91.3
500 62.8 5.6 91.6
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