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Abstract—A computer algorithm is used to build non-
linear dynamical models of pigeon flocks from 3D po-
sitional data. Temporal separation measures are used to
quantify the dynamics of the model in a global scale over
several simulations. The model is capable of exhibiting re-
alistic collective behavior that is highly dependent on speed
and density. The simulations show that for fixed initial
speeds, there is a critical density value for the population
which gives the best flock cohesion.

1. Introduction

The study of the collective interactions which affect the
dynamics of a population is an emerging research field of
interest for scientists and engineers. The simple local ac-
tions taken by every individual are influenced by others,
and they affect the global behavior of the whole population
as if they were a single entity. Many different phenomena
in nature, especially animals, have been observed to follow
such behavioral rules. The cohesive movement of animals
aggregating together is commonly refered as swarming. In
particular, bird flocking is a well studied case that shows
traces of synchronized movement and alignment by the in-
teracting birds. Recently, accurate positional data of hom-
ing pigeon flights has been obtained from GPS devices and
it lead to convincing conclusions of the existence of leaders
in flocks [1]. Photographs have also advanced the under-
standing of the interactions between birds [2]. Essentially,
the advances of measurement technology have improved
the available data to find new discoveries about real collec-
tive dynamics.

Dynamical systems with collective behavior have usu-
ally been described using nonlinear mathematical models.
Initial efforts considered partial differential equation mod-
els with diffusion components to generalize animal swarm-
ing [3]. Later models, such as the well known “Boids”,
considered simple dynamics with attraction, alignment,
and short-range repulsion, as the main mechanisms for col-
lective motion [4]. The Vicsek model showed how simple
orientation alignment between particles can produce a vari-
ety of swarming behaviors [5]. The common approaches on
mathematically modeling dynamical systems with collec-
tive behavior have been based on proposing mathematical
functions based on physical laws, which are later verified
with either manual observations of the simulations [4, 5]
or parameter tuning from data [6, 7]. An alternate way

of constructing models is to use a computer algorithm that
receives time series data as input to fit a model that can
emulate the behavior as well as possible. This data-driven
philosophy, sometimes referred as “system identification”,
has enjoyed recent success with ordinary differential equa-
tion modeling of biological systems [8, 9], as well as with
earlier applications using discrete difference equations to
model chaotic behavior [10, 11]. As a first step to test our
approach, we used simulated data from the Vicsek model
[5] to build a basic swarming model using a modeling algo-
rithm based on radial basis functions [10, 11]. Our results
confirmed that the method is adequate for modeling basic
swarming dynamics [12], and as a consequence, in this pa-
per we extend our methodology to address the modeling of
real experimental data from pigeon flights.

2. Input data: pigeon flight data from GPS

Recent studies in pigeon flocking retrieved accurate 3D
positional data of homing pigeon trajectories using GPS de-
vices [1]. The data sets consist of eleven free flights with
the pigeons moving around near their nests, and four hom-
ing flights that involve the flock moving together to reach
a destination. In this study, only the datasets of the homing
flights will be considered, since their dynamics are much
more concrete and manageable. The data from the hom-
ing flights was further sampled to provide a single large
dataset consisting of data from all the flights which is eas-
ier to handle for a computer algorithm, and from which
a single general model can be built. With this objective,
sampling rates of two seconds were used on the original
data to reduce the size. In addition to this, the flights were
cut to delete segments with no significant movement of the
birds. Far-away pigeons that were not interacting were also
removed in order to have a dataset that resembles a fully
interactive population as well as possible. All of this was
done by manual visualization of the trajectories.

3. Modeling scheme

Now that the input data has been defined, the modeling
scheme that we selected to characterize the flight dynamics
will be presented. We decided to consider a single general
model to be followed by all the birds in our simulations,
just like in the classical Boids and Vicsek models [5, 4],
so that the essential flocking behavior that is followed by
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all the pigeons can be emphasized in the model. A black-
box modeling philosophy was considered, in order to focus
on obtaining complex functions which can closer emulate
the nonlinear behavior through simulations, instead of giv-
ing a good symbolic representation. The selected modeling
method and its extension towards collective pigeon flights
shall be outlined in the next two subsections.

3.1. Radial basis functions

We selected a radial basis function method originally
presented in [10, 11] as the modeling structure and algo-
rithm to use, since it has verified capabilities of modeling
and emulating nonlinear dynamics. In general, the method
receives a scalar time series y(t) as input and attempts to
build the best model of the form:

y(t + 1) = f (z(t)) + ε(t) (1)

where z(t) = [y(t), y(t − 1), ..., y(t − d)] is the embedding of
the system and ε(t) is the model prediction error. The em-
bedding consists of the past values from the time series data
y(t) that will be considered for calculating the prediction for
time t + 1. The samples used for model retrieval are built
from time series y(t) using the embedding z(t). The func-
tion f to build has a general structure that consists of a lin-
ear term equivalent to AR models, and a nonlinear term of
sums of radial basis functions. The computational method
that optimizes the model essentially consists in generat-
ing random candidate radial basis functions, choosing the
ones which best follow the data, and estimating parame-
ters; minimizing the Minimum Description length [13] to
prevent data overfitting. Specific details about the structure
and algorithm can be found in the original papers [10, 11].

3.2. Relative position modeling for general flocking
model

We are interested in building a single model using rela-
tive positioning, from the data of the homing flights. The
idea is to use the same general model for each bird of the
system, just like the Vicsek or Boids models. Even if the
data is 3D, we decided to exclude the height component,
in order to consider the two coordinates not influenced by
gravity. Therefore we require two functions for a single
model (to predict each coordinate) and thus the model can
be defined as:

f[z(t)] =

(
f1(z(t))
f2(z(t))

)
(2)

To consider relative positional data in our model, the
general form in (1) is extended to predict the two-
dimensional relative change in position ∆xi(t + 1) = xi(t +

1) − xi(t):
∆xi(t + 1) = f[zi(t)] + ei(t) (3)

where e(t) is an array with the model prediction errors for
each coordinate. The embedding zi(t) of a bird i must con-
tain enough information from the data to guarantee an ade-
quate prediction. We propose embedding:

zi(t) =

 ∆xi(t)
〈∆xi(t)〉M

xi(t) − 〈xi(t)〉M

 (4)

where the first component represents the positional change
of bird i at time t: ∆xi(t) = xi(t) − xi(t − 1), the sec-
ond component is the average positional change of the M
nearest neighbors, and the third component is the averaged
positional difference between i and its nearest neighbors.
At a contrast to the Boids and Vicsek model, we decided
to consider topological interactions (fixed number of near-
est neighbors) instead of metric interactions (all neighbors
within a distance). This was inspired from a recent study
which concluded that birds interact with a fixed number of
neighbors [2]. In simple terms, our embedding uses the
movement of bird i, the averaged movement of its M near-
est neighbors, and its directional separation to the averaged
position of its neighbors, to predict the positional change
of i.

3.3. Unbiasing the data

It is important to note that the input data introduced in
section 2 is based upon the absolute positions of birds, and
that there is an obvious embedded navigational bias. This
can be understood by visualizing that if the data consists of
mostly movement towards a roughly southwest direction,
then most data segments will follow that direction. Since
it is of our interest to build a general flocking model using
relative positioning, the bias was attenuated by transform-
ing the data. We performed uniform 2D rotation transfor-
mations to produce the final data points on which to apply
prediction (4) and embedding (5) for model building. To
remove the navigational bias, each rotation angle for an in-
stance of (5) is calculated so that the orientations of the
prediction, ∆xi(t + 1), span a full circle (2π) in the whole
dataset. By uniformly spanning a full circle in the naviga-
tional direction of the samples, the bias is reduced.

4. Measuring flock dynamics

Although velocity correlations have been used previ-
ously to quantify collective behavior in animals [3, 1], we
introduce a positional measure to characterize swarming
dynamics with a single time-depdendent variable by defin-
ing the average separation of individuals to the mean posi-
tion of the population at a given time t as:

δg(t) =
1
N

N∑
i=1

‖xi(t) − 〈x(t)〉N‖ (5)

Our goal is to use this statistic to analyze the dynamical
properties of a bird population from its trajectory data. This

- 694 -



measure can be useful to perform qualitative analysis of a
single dataset, with simple visualization of transient and
steady state properties of the swarm. The average separa-
tion over all time intervals T is a more compact statistic,
and will be defined as δg = 〈δg(t)〉T .

5. Methodology

The algorithmic process to build a single model will be
outlined:

Input: Time series matrix containing positional
data from multiple homing flights : x(t)

For each positional coordinate j:

1. Build samples for the function f j using as
output ∆x( j)

i (t + 1) with its respective em-
bedding zi(t), using data from all parti-
cles/pigeons.

2. Run the radial basis modeling algorithm.

3. Set the retrieved function as f j.

The radial basis modeling algorithm [10, 11] optimizes
over a random set of generated functions to build the
model, which makes it necessary to run the algorithm sev-
eral times to retrieve different models for the same dataset
and find the most appropriate one. Details on the model
selection criteria will be described in the results section.

6. Results

The data from the homing flights that was described in
section 2 was used to build five models for each structure
with M = 1 to M = 4. The selection of the “best” model
was done by using ten different sets of initial conditions
that resemble the properties of one of the homing flights
to simulate flights of N = 9 particles, and using δg mea-
sures to compare between the cohesion of the models. The
flight with lowest average separation δg, was selected as the
“best model” due to its higher flocking behavior; and it was
found to be a model with M = 4. This model was used for
all the analyses and it will be referred as “the model” in
general terms.

With different populations sizes and parameter values,
our model was able to simulate many realistic behaviors,
ranging from global to local swarming. In order to gather
information about the qualitative dynamics using δg(t), we
decided to limit our simulations by only changing the ini-
tial densities and speeds of the birds, using a population
size (N) and number of nearest neighbors (M) fixed at 300
and 4 respectively. The initial density of the population was
varied according to r = 250rc, where r is the radius (in me-
ters) of the circle in which the initial positions of the par-
ticles are distributed with a uniform random distribution,
and rc is the actual coefficient that is varied for each case.
The initial speeds (the magnitudes of ∆xi(1)) were varied
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Figure 1: For fixed initial speeds, average separation δg as
a function of density (radius rc)

according to vi = 30vc, by modifying vc = [0, 1], while the
initial orientations of ∆xi(1) were obtained from a random
uniform distribution U(0, 2π).

One of the most interesting conclusions we could get
from the simulation data is that for a fixed initial speed vc,
there is a critical density value which gives best cohesion
in the flock. This means that high density scenarios do not
guarantee that the flock will stay together. Figure 1, shows
δg(t) values averaged over time for different initial density
values. It clearly shows how for a fixed initial speed, by
decreasing the density (increasing rc) the separation of the
flock decreases until reaching an in-between critical value,
and then increases for lower densities. All this implies
that a critical density distribution facilitates flock cohesion
when starting from a disorganized initial state. Also of im-
portance, the figure shows how in general, lower speeds
give lower separations, which is consistent with the fact
that birds can reach their neighbors much more easily if the
overall movement is slower.

To better illustrate this behavior, figures 2 and 3 show
simulations of two cases with different initial density val-
ues but the same initial speeds (vc = 0.5). For an early
time interval, figure 2 shows how the individuals in the
case of higher density (rc = 0.5), even though densely
concentrated, move almost uniformly outward in all direc-
tions from the center, while the lower density distribution
(rc = 2) has significant clusters of individuals aggregating.
After some time, in figure 3 we can see how the low density
simulation clearly has a more cohesive and aligned group
than the more dispersed high density population.

7. Conclusions

By verifying the model simulations, our results confirm
that both the separations (densities) and speeds of birds
in pigeon flocks are important parameters that character-
ize the dynamics of the system, in the form of flock cohe-
sion and behavior. We discovered that a critical separation
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Figure 2: Comparison of simulations with different initial
densities and vc = 0.5 at t = 50
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Figure 3: Comparison of simulations with different initial
densities and vc = 0.5 at t = 200

between individuals shall achieve the best overall aggrega-
tion, which also implies that a mechanism similar to the
alignment, short-range repulsion, and attraction behaviors
from classic models [3, 4] exists in pigeon flight. In gen-
eral, we have demonstrated that using experimental data
to fit black-box nonlinear dynamical system models, it is
possible to simulate realistic dynamics featuring collective
behavior, and to get important conclusions about the source
system.
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