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Abstract—Recently, fuzzyc-means clustering with ker-
nel functions is remarkable in the reason that these algo-
rithms can handle datasets which consist of some clusters
with nonlinear boundary. However the algorithms have the
following problems: (1) the cluster centers can not be cal-
culated explicitly, (2) it takes long time to calculate clus-
tering results. By the way, we have proposed the cluster-
ing algorithms with regularization terms of penalty vectors
to handle uncertain data. In this paper, we propose new
clustering algorithms withL1-regularization term by intro-
ducing explicit mapping of kernel functions to solve the
following problems.

1. Introduction

In recent years, according to large-scale and complicated
data of computer systems by progress of the hardware tech-
nology, the importance of data analysis techniques has been
increasing. Clustering, one of the data classification tech-
nique, is the method without any external criterion and it
classifies data automatically. One of most typical and use-
ful clustering is fuzzyc-means clustering (FCM) [1] and
we consider FCM in this paper.

Now, studies of clustering methods for detecting non-
linear boundary have been widely discussed and kernel
trick [2, 3] is focused as a very useful tool to handle datasets
which consist of some clusters with nonlinear boundary.
The kernel trick uses some function called “kernel func-
tion”.

Here, we consider a mappingϕ : ℜp → ℜs (p ≪ s).
The kernel function is an operatorK : ℜp×ℜp→ℜwhich
satisfiesK(x, y) = ⟨ϕ(x), ϕ(y)⟩. We can calculate the value
of the inner product in the high-dimensional feature space
with with low-cost calculation by the kernel functions.

However, special problems frequently arise when we in-
troduce kernel functions into FCM. First, the cluster centers
can not be calculated directly. The reason is that the map-
ping ϕ can be not represented explicitly in general. The
second problem is caused by the first one, that is, it takes
long time to calculate clustering results. The procedure to
calculate the belongingness or membership grades of each
data to clusters becomes complicated. To solve the above
problems, Miyamoto et al. introduced an explicit mapping
into kernel trick and succeeded to calculate the cluster cen-
ters directly [4].

By the way, the data we handle have uncertainties in
many cases. Until now, we have two methodologies to an-

alyze such data, deterministic and parametric ones.

In deterministic methodology, the uncertainty intro-
duced data is represented as an interval. Distance or dis-
similarities are the most essential measures for data anal-
ysis and therefore, the measures between intervals must
be defined when we handle uncertainty of data as interval.
There are many kinds of such measures, e.g., Hausdorff
distance. However, we have two problems when we try to
classify the dataset of such data. First, we don’t have clear
indication to select which measures to use. Second, we
can’t discuss clustering in the framework of optimization
with such measures.

On the other hand, the uncertainty is represented by
some probabilistic density function (PDF) in parametric
methodology. In this methodology, the clustering is re-
garded as a method to determine some parameters of the
PDF. However, the methodology have also at least one
problem, that is, selection which type of PDFs.

Therefore, we have proposed and developed the concept
of tolerance in Ref. [5, 6, 7] to solve the above problems. In
our concept, tolerance vectors [5] and penalty ones [6, 7]
play main role. Uncertain data is allowed to allocate any
position by those vectors as far as the constraints for those
vectors are satisfied and the position is derived as an opti-
mal solution of a given objective function. Hence, We can
say that this concept is in the framework of methodology
of soft computing. Penalty vectors are similar to tolerance
ones and the methods using penalty vectors become more
flexible than tolerance vectors because no constraint for the
vectors is needed. Moreover, the concept has been devel-
oped by using kernel trick in Ref. [8]. The method can
classify datasets which consist of clusters of uncertain data
with nonlinear boundary.

In this paper, we try to construct new FCMs for uncer-
tain data withL1-regularization term of penalty vectors us-
ing explicit kernel mapping (EK-FCMPL1). The proposed
methods have the following advantages:

1. The method can classify datasets which consist of
clusters of uncertain data with nonlinear boundary be-
cause of kernel trick.

2. It takes shorter time to calculate clustering result than
the conventional method because of explicit mapping.
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2. Kernelized FCM for Uncertain Data with L1-
Regularization Term of Penalty Vectors Using Ex-
plicit Mapping

In this section, we try to construct FCM for uncertain
data withL1-regularization term of penalty vectors using
explicit mapping of kernel functions (EK-FCMPL1). First,
we describe kernelized FCM for uncertain data withL1-
regularization term of penalty vectors (K-FCMPL1). Next,
we introduce an explicit mapping of kernel functions into
K-FCMPL1 to construct EK-FCMPL1. Last, we show an
algorithm of EK-FCMPL1.

2.1. Kernel Functions

First, we define some symbols to introduce kernel func-
tions. A mapping from the pattern space to the feature
space is expressed asϕ : ℜp → ℜs (p≪ s). Each data in
the feature space is denotedϕ(xk) = xϕk = (xϕk1, . . . , x

ϕ
ks)

T ∈
ℜs and the datasetXϕ =

{
xϕ1, . . . , x

ϕ
n

}
is given. Each cluster

Ci(i = 1, . . . , c) has a cluster centervϕi = (vϕi1, . . . , v
ϕ
is)

T ∈
ℜs. Vϕ means a set of cluster centers

{
vϕ1, . . . , v

ϕ
c

}
. A mem-

bership grade forxϕk to Ci , which means belongingness
of xϕk to Ci , is denoted byuki. U means a partition ma-
trix (uki)1≤k≤n,1≤i≤c. Moreover,δϕk = (δϕk1, . . . , δ

ϕ
ks)

T ∈ ℜs

and wk ∈ [0,+∞) mean a penalty vector and a weight
of the penalty vectorδϕk , respectively. ∆ and W mean
a set of penalty vectors{δϕ1, . . . , δ

ϕ
n} and a set of weights

{w1, . . . ,wn}, respectively.
Now, a kernel functionK : ℜp × ℜp → ℜ satisfies the

following relation:

K(x, y) = ⟨ϕ(x), ϕ(y)⟩ (1)

From Mercer’s theorem [10],K is a continuous symmetric
non-negative definite kernel iff a mappingϕ which satisfies
the above relation exists. We should notice thatϕ is not
explicit.

2.2. Objective Functions

Kernelized fuzzyc-means clustering (K-FCM) is FCM
in which a kernel function is introduced into dissimilar-
ity. An extended K-FCM by introducing penalty vectors
of the quadratic term have been proposed in Ref. [8]. Here,
we consider the objective functionJkspL1

of the standard
EK-FCMPL1 (sEK-FCMPL1) and another functionJkepL1

of
the entropy based EK-FCMPL1 (eEK-FCMPL1) as follows:

JkspL1
(U,∆ϕ,Vϕ) =

n∑
k=1

c∑
i=1

(uki)
mdki + 2

n∑
k=1

wk∥δϕk∥1, (2)

JkepL1
(U,∆ϕ,Vϕ) =

n∑
k=1

c∑
i=1

ukidki + λ
−1

n∑
k=1

c∑
i=1

uki loguki

+ 2
n∑

k=1

wk∥δϕk∥1. (3)

The dissimilaritydki is the square of the norm as follows.

dki = d(xk + δk, vi) = ∥xk + δk − vi∥2

=

p∑
j=1

(xk j + δk j − vi j )
2. (4)

∥ • ∥1 means theL1-norm.

2.3. Optimal Solutions of sEK-FCMPL1

We can derive the optimal solutions of the membership
gradesuki and the cluster centersvϕi by using Lagrange
multiplier. The optimal solutions of standard K-FCMPL1

(sK-FCMPL1) are as follows:

uki =
(1/dki)

1
m−1

c∑
l=1

(1/dkl)
1

m−1

, (5)

vϕi =

n∑
k=1

(uki)
m(xϕk + δ

ϕ
k)

n∑
k=1

(uki)
m

. (6)

Next, we derive the optimal solution of penalty vectors
δ
ϕ
k . Now, we define a semi-objective functionJk j(δ

ϕ
k j).

Jk j(δ
ϕ
k j) =

c∑
i=1

(uki)
m(xϕk j + δ

ϕ
k j − vϕi j )

2 + 2wk|δϕk j|. (7)

The δϕk j which minimizesJk j is the optimal solution of

JkspL1
becauseJkepL1

(U,∆ϕ,Vϕ) =
∑s

j=1 Jk j(δ
ϕ
k j). However,

the term|δϕk j| is piecewise linear andJk j cannot be differen-

tiated atδϕk j = 0. Therefore, we have to consider another
way to find the solutions.

Here, we consider the value of∂Jki

∂δk j
. We can find the

optimal solution isδk j as the point at which the value of
∂Jki

∂δk j
turns into positive from negative. Thus, We consider

two cases,δϕk j > 0 andδϕk j < 0.

We denote the semi-objective functions whenδϕk j > 0

andδϕk j < 0 asJ+k j andJ−k j, respectively and show the func-
tions as follows:

J+k j(δ
ϕ
k j) =

c∑
i=1

(uki)
m(xϕk j + δ

ϕ
k j − vϕi j )

2 + 2wkδ
ϕ
k j, (δϕk j > 0)

(8)

J−k j(δ
ϕ
k j) =

c∑
i=1

(uki)
m(xϕk j + δ

ϕ
k j − vϕi j )

2 − 2wkδ
ϕ
k j. (δ

ϕ
k j < 0)

(9)

Therefore, we can getδϕ+k j andδϕ−k j from
∂J+k j

∂δ
ϕ
k j

= 0 and
∂J−k j

∂δ
ϕ
k j

=
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0 as follows:

δ
ϕ+
k j =

−
 c∑

i=1

(uki)
m(xϕk j − vϕi j ) + wk


c∑

i=1

(uki)
m

, (10)

δ
ϕ−
k j =

−
 c∑

i=1

(uki)
m(xϕk j − vϕi j ) − wk


c∑

i=1

(uki)
m

. (11)

Therefore, we obtain the optimal solution ofδϕk j is as fol-
lows:

δ
ϕ
k j =


δ
ϕ+
k j , (δϕ+k j > 0)

δ
ϕ−
k j , (δϕ−k j < 0)

0. (otherwise)

(12)

2.4. Optimal Solutions of eEK-FCMPL1

We can derive the optimal solutions by using La-
grange multiplier. The optimal solutions of entropy based
K-FCMPL1 are as follows:

uki =
exp(−λdki)

c∑
l=1

exp(−λdkl)

, (13)

vϕi =

n∑
k=1

uki(x
ϕ
k + δ

ϕ
k)

n∑
k=1

uki

, (14)

δ
ϕ
k j =


δ
ϕ+
k j , (δϕ+k j > 0, m= 1)

δ
ϕ−
k j , (δϕ−k j < 0, m= 1)

0. (otherwise)

(15)

We can formally obtain the optimal solutions as above.
However, we cannot calculatevϕi and δϕk directly by this
method. The reason is that the mapϕ is not explicit and
we have to usexk, not xϕk . Hence, We introduce an explicit
mapping into K-FCMPL1 to calculatevϕi directly.

2.5. Optimal Solutions with Explicit Mapping of Ker-
nel Functions

In this paragraph, we introduce an explicit mapping of
kernel functions [4]. As above, the kernel functionK sat-
isfies K(x, y) = ⟨ϕ(x), ϕ(y)⟩ = ⟨xϕ, yϕ⟩. Now, we con-
sider a kernel function with the kernel matrixK = (Kkl) =
(K(xk, xl)). As K is a positive symmetric matrix, we can
introduce a inner product⟨x, y⟩K = xKy intoℜs. We as-
sume thatϕ : X → ℜn and ϕ(xk) = xϕk = ek. Here
ek = (ek1, . . . , eks) is a unit vector andek j is Kronecker
delta. Becauseϕ can be represented explicitly, we callϕ
using the kernel matrixK explicit mapping. Therefore, the
inner product is as follows:

⟨eg,eh⟩k = Kgh. (16)

Thus, the dissimilaritydki can be calculated as follows:

dki = d(xϕk + δ
ϕ
k , v
ϕ
i ) = d(ek + δ

ϕ
k , v
ϕ
i )

= ⟨ek + δ
ϕ
k − vϕi ,ek + δ

ϕ
k − vϕi ⟩K

= (ek + δ
ϕ
k − vϕi )T K(ek + δ

ϕ
k − vϕi ). (17)

We can calculate the optimal solutions by using the above
inner product and dissimilarity and replacingxk andxk j by
ek andek j, respectively. We had to omit the details for want
of space.

2.6. Algorithm

Here, we construct an algorithm for EK-FCMPL1 using
the above optimal solutions with the explicit mapping as
follows.

Algorithm 1 (sEK-FCMP L1 and eEK-FCMPL1)

Step 1 Set the initial values U and∆ϕ. Generate the ker-
nel matrix K.

Step 2 Calculate Vϕ by the optimal solutions with the ex-
plicit mapping on fixing U and∆ϕ.

Step 3 Calculate U by the optimal solutions with the ex-
plicit mapping on fixing∆ϕ and Vϕ.

Step 4 Calculate∆ϕ by the optimal solutions with the ex-
plicit mapping on fixing Vϕ and U.

Step 5 Finish if the solutions are convergent, else go back
to Step 2.

3. Numerical Examples

We show numerical examples in Fig. 1∼ Fig. 8. The
data size is 133 and the pattern space is [0,1] × [0,1]. We
use Gaussian kernel:

K(x, y) = exp(−β∥x− y∥2).

We use the same initial values at all case and give the same
weight of penalty vectors to all data.

Fig. 1 ∼ Fig. 4, and Fig. 5∼ Fig. 8 are the results by
sEK-FCMPL1 and eEK-FCMPL1, respectively. We also
show the cluster centers by using kernel principal compo-
nent analysis (K-PCA) [12].

In Table 1 we show the range ofwk when desirable clus-
tering results are obtained. In the range, the largerwk gets,
the faster the algorithm converges and the clearer the shape
of the fuzzy classification functions becomes. In addition,
we get a desirable clustering results by K-sFCMPL1 even
whenwk is very small, and the range ofwk hardly changes
even if a value ofβ changes. Thus, we can say that K-
sFCMPL1 is robust for the parameters.

4. Conclusion

In this paper, we developed FCM for uncertain data with
quadratic regularization term of penalty vectors by intro-
ducing explicit mapping of kernel functions. The proposed
algorithm has the following features:

1. The algorithm can handle datasets which consist of
some clusters with nonlinear boundary.

- 609 -



Table 1: The range ofwk when obtaining desirable cluster-
ing results

sEK-FCMPL1 (β = 70,m= 1.2) 10−6 ≤ wk ≤ 0.91
sEK-FCMPL1 (β = 40,m= 1.2) 10−6 ≤ wk ≤ 0.94
eEK-FCMPL1 (β = 70, λ = 10) None
eEK-FCMPL1 (β = 40, λ = 5.0) 0.94≤ wk

2. Because of explicit mapping of kernel functions, we
reduce the calculation time.

3. The algorithm becomes more simple than the conven-
tional ones.

In the forthcoming paper, we will discuss how to find
appropriate parameters and apply to real data.
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Figure 1: sEK-FCMPL1

(β = 70,m= 1.2,wk = 0.1)
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Figure 2: K-PCA for
sEK-FCMPL1
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Figure 3: The fuzzy classi-
fication function
for sEK-FCMPL1 (the 1st
cluster)
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Figure 4: The fuzzy classi-
fication function
for sEK-FCMPL1 (the 2nd
cluster)
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Figure 5: eEK-FCMPL1

(β = 40, λ = 5.0,wk = 5.0)
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Figure 6: K-PCA for
eEK-FCMPL1
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Figure 7: The fuzzy classi-
fication function
for eEK-FCMPL1 (the 1st
cluster)
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Figure 8: The fuzzy classi-
fication function
for eEK-FCMPL1 (the 2nd
cluster)

- 610 -


	Navigation page
	Session at a glance
	Technical program

