2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010 NOLTA

2010

Kernelized Fuzzyc-Means Clustering
for Uncertain Data with L;-Regularization Term
of Penalty Vectors Using Explicit Mapping

ENDO Yasunori, TAKAYAMA Isao*, HAMASUNA Yukihiro%" and MIYAMOTO Sadaaki

tDepartment of Risk Engineering, University of Tsukuba,
Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
Email: {endo@, yhama@soft ,miyamoto@}. tsukuba.ac. jp
tGraduate School of Systems and Information Engineering, University of Tsukuba,
Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
Email: takayama@soft.risk.tsukuba.ac. jp
§Research Fellow of the Japan Society for the Promotion of Science
Email: yhama@soft.risk.tsukuba.ac. jp

Abstract—Recently, fuzzyc-means clustering with ker- alyze such data, deterministic and parametric ones.

nel functions is remarkable in the reason that these algo- |, geterministic methodology, the uncertainty intro-
rithms can handle datasets which consist of some clustéf§ceq data is represented as an interval. Distance or dis-
with nonlinear boundary. However the algorithms have thg;njjarities are the most essential measures for data anal-
following problems: (1) the cluster centers can not be caligis and therefore, the measures between intervals must
culated explicitly, (2) it takes long time to calculate Clus,¢ yefined when we handle uncertainty of data as interval.
tering results. By the way, we have proposed the clustefygre are many kinds of such measures, e.g., Haffsdor
ing algorithms with regularization terms of penalty vectorgjiciance. However, we have two problems when we try to

to handle uncertain data. In this paper, we propose neijagsify the dataset of such data. First, we don't have clear
clustering algorithms with.;-regularization term by intro- . qicafion to select which measures to use. Second, we

ducing explicit mapping of kernel functions to solve theant giscuss clustering in the framework of optimization

following problems. with such measures.
On the other hand, the uncertainty is represented by
1. Introduction some probabilistic density function (PDF) in parametric

methodology. In this methodology, the clustering is re-

In recent years, according to large-scale and complicat@@rded as a method to determine some parameters of the
data of computer systems by progress of the hardware tedfPF. However, the methodology have also at least one
nology, the importance of data analysis techniques has bei®blem, that is, selection which type of PDFs.
increasing. Clustering, one of the data classification tech- Therefore, we have proposed and developed the concept
nique, is the method without any external criterion and ipf tolerance in Ref. [5, 6, 7] to solve the above problems. In
classifies data automatically. One of most typical and usgur concept, tolerance vectors [5] and penalty ones [6, 7]
ful clustering is fuzzyc-means clustering (FCM) [1] and play main role. Uncertain data is allowed to allocate any
we consider FCM in this paper. _ position by those vectors as far as the constraints for those
_ Now, studies of clustering methods for detecting nonvectors are satisfied and the position is derived as an opti-
linear boundary have been widely discussed and kernglal solution of a given objective function. Hence, We can
trick [2, 3] is focused as a very useful tool to handle datasetgy that this concept is in the framework of methodology
which consist of some clusters with nonlinear boundaryf soft computing. Penalty vectors are similar to tolerance
The kernel trick uses some function called “kernel funcones and the methods using penalty vectors become more
tion™. flexible than tolerance vectors because no constraint for the

Here, we consider a mapping: RP — RS (p < s).  vectors is needed. Moreover, the concept has been devel-
The kernel function is an operatiir: RPxRP — R which  oped by using kernel trick in Ref. [8]. The method can
satisfiesK(x,y) = (¢(X), #(y)). We can calculate the value classify datasets which consist of clusters of uncertain data
of the inner product in the high-dimensional feature spaogith nonlinear boundary.

with with low-cost calculation by the kernel functions. |- 4o paper, we try to construct new FCMs for uncer-
However, special problems frequently arise when we ing,;, data withL,-regularization term of penalty vectors us-

can not be calculated directly. The reason is that the mapiainods have the following advantagés':
ping ¢ can be not represented explicitly in general. The
second problem is caused by the first one, that is, it takes
long time to calculate clustering results. The procedure to
calculate the belongingness or membership grades of eacfll'
data to clusters becomes complicated. To solve the above
problems, Miyamoto et al. introduced an explicit mapping
into kernel trick and succeeded to calculate the cluster cen-
ters directly [4]. ) )
By the way, the data we handle have uncertainties in2. It takes shorter time to calculate clustering result than
many cases. Until now, we have two methodologies to an-  the conventional method because of explicit mapping.

The method can classify datasets which consist of
clusters of uncertain data with nonlinear boundary be-
cause of kernel trick.
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2. Kernelized FCM for Uncertain Data with L;- The dissimilaritydy; is the square of the norm as follows.
Regularization Term of Penalty Vectors Using Ex-

plicit Mapping A = d(X + 01, Vi) = [[Xc + 6k — Vill?

In this section, we try to construct FCM for uncertain B 5 P 4
data withL;-regularization term of penalty vectors using - Z(in + Okj = Vij)”- (4)
explicit mapping of kernel functions (EK-FCMP. First, i=1
we describe kernelized FCM for uncertain data wiith
regularization term of penalty vectors (K-FCMP. Next, |l o ||z means thé.;-norm.
we introduce an explicit mapping of kernel functions into
K-FCMP_, to construct EK-FCMP. Last, we show an : . _
algorithmlof EK-FCMR.,. 1 2.3. Optimal Solutions of SEK-FCMP

We can derive the optimal solutions of the membership

2.1. Kernel Functions gradesuy; and the cluster centerd by using Lagrange
multiplier. The optimal solutions of standard K-FCMP
First, we define some symbols to introduce kernel fundsK-FCMR,) are as follows:
tions. A mapping from the pattern space to the feature

space is expressed @as RP —» RS (p < s). Each data in (1/dki)%

the feature space is denotetk) = X! = (X),....x)T € Wi = ——, (5)
RS and the dataset’ = {xf e xﬁ} is given. Each cluster Z(l/dm)ﬁ

Ci(i = 1,...,c) has a cluster centef = (V;,...,V))T € ':1

RS. V¢ means a set of cluster centév§, ..., vZ}. A mem- 3 ()"0 + )

bership grade forx‘lf to C;, which means belongingness Vo kel ©)
of X to C;, is denoted byuq. U means a partition ma- : . T

trix (Uii)1ckenicicc. Moreover,sy = (60.,...,50)7 € RS kzz;(uki)

andwg € [0,+00) mean a penalty vector and a weight
of the penalty vectow;, respectively. A and W mean  Next, we derive the optimal solution of penalty vectors
a set of penalty vector®},..., s} and a set of weights 7. Now, we define a semi-objective functidpj(éﬁj).
{wa,...,Wp}, respectively.
Now, a kernel functiorK : RP x RP — R satisfies the c
following relation: ka(5¢k5j) - Z;(Uki)m(xﬁj " 54k>j _ vﬁ)z + 2Wk|5zj|- @)
i=

K(X.y) = (¢(x). ¢(y)) (1)

. M H (10K i ) ~ The 6“k’j which minimizesJy; is the optimal solution of
rom Mercer's theorem is a continuous symmetric "

non-negative definite kerntia mappings which satisfies Jksn, PeCaUS&ken, (U, A%, V) = 251 Ji(dy;)- However,
the above relation exists. We should notice thas not the term|6‘ﬁj| is piecewise linear and; cannot be dferen-

explicit. . .
P tiated atéﬁj = 0. Therefore, we have to consider another

way to find the solutions.
Here, we consider the value Qgﬁ We can find the
Kernelized fuzzyc-means clustering (K-FCM) is FCM optimal solution issy; as the point at which the value of
in which a kernel function is introduced into dissimilar- %% t,rns into positive from negative. Thus, We consider

ity. An extended K-FCM by introducing penalty vectors %k s
of the quadratic term have been proposed in Ref. [8]. Her&y0 caseso, ; > 0 andéfj <0.

we consider the objective functiodh(SFll of the standard We denote the semi-objective functions whﬁn >0
EK-FCMP,, (SEK-FCMR,) and another functiodke,ll of )

® _ .
the entropy based EK-FCMP(eEK-FCMR,) as follows: ?ndékj < 0 asJ;; andJj;, respectively and show the func-
tions as follows:

2.2. Objective Functions

n [0} n
A%, V) = )Mdi + 2 2 :
Jksp, (U, A%, V%) ZZ(Um) i + ZWk”éi”la (2) ‘Jlrj((s(lij) _ E(Uki)m(xﬁj +5i] —\/'{})2 + 2Wk5(|fj, (5¢k>j > 0)
i=

k=1 i=1 k=1
8
C
n c n ¢ —rshy _ M b _ 2 _ ¢ ¢

Jkenl U, A¢,V¢) _ Z Z Ul + e Z Z Ui 100 Uy ka(dkj) = ;(Uh) (Xﬁl + 5kj V,d]) 2Wk5kj~ (5kj <0)

=1 i1 k=1 i-1 - 9
n

+2 > Wlloplla. (3) . .

£ k Therefore, we can géﬁj+ andéfj‘ from %E; =0 and%: =
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0 as follows: Thus, the dissimilarityl; can be calculated as follows:

C
- (Z(uki)m(x‘{:j -Vl + Wk) d = d0§ + 65, V) = d(ex + 5. V)
o= . (10) = (@ + 0 =V, & + 6 = V)
D) = (a+ 8 - V)TK(a+ ol - V). (17)
i=1
c | We can calculate the optimal solutions by using the above
- Z(uki)m(xﬁ_ —\V2) — w inner product and dissimilarity and replacirgandx; by
= I e andeyj, respectively. We had to omit the details for want
S = —— . . (11) of space.
Am
Zl:(uk') 2.6. Algorithm
1=

. . . : Here, we construct an algorithm for EK-FCMRusing
Therefore, we obtain the optimal solution &f is as fol-  the ahove optimal solutions with the explicit mapping as

lows: follows.
Sij» (O >0) Algorithm 1 (SEK-FCMP ., and eéEK-FCMP.,)
5= S (05 <0) (12) St the il valtios U and?. G -
0. (otherwise) Step nlel rﬁg ttrig I|<n.|t|a values U and?. Generate the ker-
2.4. Optimal Solutions of eEK-FCMR,, Step 2 Calculate \? by the optimal solutions with the ex-

We can derive the optimal solutions by using La-  Plicit mapping on fixing U and’.

grange multiplier. The optimal solutions of entropy base@EteID 3 Calculate U by the optimal solutions with the ex-
K-FCMPy, are as follows: plicit mapping on fixingA? and /.

expEAdy
U= ————— PE-Adk) , (13) sStep 4 CalculateA? by the optimal solutions with the ex-
Z expAdq) plicit mapping on fixing ¥ and U.
I=1 Step 5 Finish if the solutions are convergent, else go back
to Step 2.

Zuki(xi +6})
=

Vv’ - , (14) 3. Numerical Examples
Zuki We show numerical examples in Fig.~1Fig. 8. The
k=1 data size is 133 and the pattern space j4]& [0, 1]. We
) (5;’ (5; >0, m=1) use Gaussian kernel:
% =0 (g <O m=1) (15 K(x.Y) = exp(Blix - yiP).

0. otherwise
( ) We use the same initial values at all case and give the same

We can formally obtain the optimal solutions as aboveweight of penalty vectors to all data.

However, we cannot calcula# and ] directly by this ~_Fig. 1 ~ Fig. 4, and Fig. 5~ Fig. 8 are the results by
method. The reason is that the mais not explicit and SEK-FCMR, and eEK-FCMR,, respectively. We also
«* Hence. We introduce an explicit show the cluster centers by using kernel principal compo-
we have to use, notx,. Hence, PICIL nent analysis (K-PCA) [12].
mapping into K-FCMP, to calculate‘/f5 directly. In Table 1 we show the range wof when desirable clus-
tering results are obtained. In the range, the lavgagets,
2.5. Optimal Solutions with Explicit Mapping of Ker-  the faster the algorithm converges and the clearer the shape
nel Functions of the fuzzy classification functions becomes. In addition,
i ] o ] we get a desirable clustering results by K-sFGMeven
In this paragraph, we introduce an explicit mapping ofvhenw, is very small, and the range of hardly changes
kernel functions [4]. As above, the kernel functignsat- even if a value ofs changes. Thus, we can say that K-
isfies K(x,y) = (#(x),o(y)) = (X’,y*). Now, we con- sFCMR, is robust for the parameters.
sider a kernel function with the kernel mati = (Ky) =
(K(x. X1)). As K is a positive symmetric matrix, we can .
introduce a inner produeix, y)x = xKyinto RS. We as- 4. €onclusion

sume thatp : X — R"and¢(x) = X = &. Here In this paper, we developed FCM for uncertain data with
& = (&a,---,&s) iS @ unit vector and; is Kronecker quadratic regularization term of penalty vectors by intro-
delta. Because can be represented explicitly, we call ducing explicit mapping of kernel functions. The proposed
using the kernel matrix explicit mapping. Therefore, the algorithm has the following features:
inner product is as follows:
1. The algorithm can handle datasets which consist of
(&g, En)k = Kgh. (16) some clusters with nonlinear boundary.
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Table 1: The range o when obtaining desirable cluster- [10]
ing results

SEK-FCMR, (8=70m=1.2) | 10°® <w, <0091
SEK-FCMR, (8 =40,m=1.2) | 10° <w < 0.94
eEK-FCMR, (8 =701 = 10) None
eEK-FCMR, (8=40,1=15.0) 0.94 < wy

[11]

2. Because of explicit mapping of kernel functions, we12]
reduce the calculation time.

3. The algorithm becomes more simple than the conven-
tional ones.

In the forthcoming paper, we will discuss how to find
appropriate parameters and apply to real data.
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