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Abstract—This paper gives a method to evaluate an er-
ror bound on an approximate solution of a circuit composed
of linear passive resistors and dc soruces. The error bound
is easily calculated from circuit topology and conductance
values and is obtained without constructing circuit equa-
tions.

1. Introduction

When we solve a circuit equation by computer, the ac-
curacy of an obtained solution x̃ is an important prob-
lem, in particular in circuits containing active elements 1.
Accuracy-guaranteed algorithms, which have recently been
rapidly developed mainly in Japan and Germany, give an
answer to the problem. There are two main methods for
accuracy-guaranteed algorithms;

(i) Oishi-Rump algorithm utilizing the control of round-
ing mode of calculation

(ii) Method utilizing the fixed point theory
In the case of linear simultaneous equations, Ax = b, the

Oishi-Rump algorithm seems very powerful and gives very
good error bound. To derive the error bound, the Oishi-
Rump algorithm requires an approximate inverse matrix,
R, of A.

When we use a general-purpose circuit simulator such as
the SPICE, however, we cannot get necessary information
to apply the Oishi-Rump algorithm. In the case of SPICE
we cannot get internal data, such as the coefficient matrix
A of the circuit equation, the dimension n of A, the ap-
proximate inverse matrix of A, etc. We do not know even
what kind of equations (a loop equation, a nodal equation,
a mixed equation, a tabuleau equation, etc. ) is used in the
SPICE, though it may be guessed.

Even in such a situation can we estimate the error bound
for a given circuit? In this paper we give an answer to this
problem when the circuit is composed of linear passive re-
sistors and dc sources. Fundamentally we utilize the for-
mula used in the Oishi-Rump method, but we need neither
A nor R.

If the solution is correct, then the total current flowing
into each node is exactly 0, and conversely, if the total cur-
rent flowing into a node is 0 at every nodes, the the solu-
tion is correct. So voltage and current error bounds may be
represented by using a column vector c, of which the i-th
element represents the total current flowing into the node i.

In this paper we give an error bound for nodal volt-
ages by a product of magnification factors (defined later)
and c. Here the magnification factors can be obtained in

1An example in which x̃ may considerably differ from the true solution
will be presented at the conference. In this paper however we treat only a
passive resistive circuit as a preliminary work.

terms of circuit topology. The amount of required compu-
tation for the error bound is very few (aboutO(n2) additions
and O(n) multiplications) and the result is obtained without
constructing a circuit equation.

The discussion depends on the property of hyperdomi-
nancy of nodal matrices. In the case where all dominance
conditions are satisfied with inequality, an error bound is
easily obtained. Most of this paper is devoted to the cases
where dominance conditions hold with equality for some
rows of a nodal admittance matrix.

2. Fundamental formula of accuracy-guaranteed algo-
rithm and its circuit-theoretic interpretation

2.1. Equation and a residual vector

Let an n × n matrix be A and let

Ax = b (1)

be an equation to be solved. When we solve Eq.(1) by LU
decomposition etc., we can obtain not only an approximate
solution x̃ but also an appoximate inverse matrix R ≈ A−1

in the process of calculation.
Let

r = [ri] ≡ b − Ax̃ (2)
be a residual vector 2.

If A is symmetric and satisfies

aii ≥
n∑

j=1; j�i

|ai j| (i = 1, 2, · · · , n) (3)

then we say that A is a hyperdominant matrix. If in par-
ticular all “≥” in Eq.(3) are replaced by the inequality “>”,
then A is said to be “strictly hyperdominant. We call the
conditions in Eq.(3) “dominance conditions”.

2.2. Fundamental theorem

Since we study the maximum error bound, we use the
infinity norm || · || for vectors and matrices. Let x∗ be the
exact solution of Eq.(1). The following is well-known:
Theorem 1: Assume that

||RA − I|| < 1 (4)

is satisfied. Then we have

||x∗ − x̃|| < ||Rr||
1 − ||RA − I|| (5)

Note that Theorem 1 holds for any R satisfying Eq.(4),
that is, R need not be an approximate inverse matrix of A.

As was described in Introduction, we utilize Eq.(5) with-
out use of both A and an approximate inverse R of A.

2In this paper the notation “ri” does not mean the resistance value.
1
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2.3. Property of linear passive resistive circuits

Let N denote a linear passive resistive circuit with (n+1)
nodes. Let the nodal equation for N be Eq.(1). We consider
a nodal equation since it contains the necessary and suffi-
cient information on N.
Lemma 1: The nodal matrix A of N is a hyperdominant
matrix (See Eq.(3)).
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Fig. 1 Bold lines denote resistors(conductances)
Fig. 1 shows the node i of N and the resistors connected

to this node, where the ground node is denoted by the node
“0”, the bold lines denote resistors and gi j represents the
conductance between nodes i and j. The nodal matrix A is
given in terms of gi j as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n
j=0 g1 j −g12 −g13 · · · −g1n
−g21

∑n
j=0 g2 j −g23 · · · −g2n

· · · · · · · · · · · ·
−gn1 −gn2 −gn3 · · · ∑n

j=0 gn j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

gii = 0, gi j = gji (i, j = 1, · · · , n) (7)

aii =

n∑
j=0

gi j(≥ 0), ai j = −gi j(≤ 0) (i � j) (8)

As seen from Eqs.(7) and (8), we have:
Lemma 2: The sum of the elements of the i-th row of A is
0, if and only if gi0 = 0.
Lemma 3：In the case of a strictly hyperdominant matrix
we have:

gi0 � 0 (i = 1, · · · , n) (9)
Lemma 4：If the dominance conditions are satisfied with
equality at all nodes, then gi0 = 0(i = 1, · · · , n). This means
that the node 0 and other nodes are separated each other
and then |A| = 0. We therefore see that some circuits can
be extremely ill-conditioned when all gi0 are very small.

In this paper we assume:
Assumption 1：The solution x̃i is the node potential.

The i-th element of r(= b − Ax̃) represents the total cur-
rent flowing into node i. For Fig. 1 we have:

ri =

4∑
j=0

gi j(x̃ j − x̃i) (x̃0 = 0) (10)

Thus we easily calculate r from both x̃ and the circuit con-
figuration without A and b in Eq.(1).

As another example of circuits having a hyperdominant
matrix, we have:
Lemma 5: The coefficient matrix of a loop equation of a
planar circuit is hyperdominant, if we choose loop currents
appropriately.

2.4. Error bound for a strictly hyperdominant case

If A is strictly hyperdominant, then we can verify that

R = diag
[

1
a11
,

1
a22
, · · · , 1

ann

]
(11)

satisfies Eq.(4).
We define the margin figure δi of the i-th row of A as:

δi ≡ 1 −
∑

j�i |ai j|
aii

(12)

From Eq.(4) we easily see that 0 ≤ δi ≤ 1. Then we have
by simple calculation:

||I − RA|| = max
i
{1 − δi} (13)

1 − ||I − RA|| = min
i
δi ≡ δmin (14)

||x∗ − x̃|| < ||Rr||
1 − ||RA − I|| =

1
δmin
||Rr||

=
1
δmin

max
i

[ |ri|
aii

]
(if δmin � 0) (15)

Here we call 1
aiiδmin

a magnification factor.
Lemma 6：We can evaluate an error bound of the approx-
imate solution x̃ by Eq.(15), if δmin > 0 and aii are known
(Note that aii is given by Eq.(8)).

The amount of computation required to calculate δmin
and aii is about n2 additions and 2n multiplications, and
is called the basic calculation.

Circuit theoretic interpretations of these equations are as
follows:

1
δmin

=
1

1 − ||I − RA|| = max
i

∑n
j=0 gi j

gi0
= max

i

aii

gi0

= max
i

sum of conductances at the node i
conductance between nodes i-0

(16)

ri

aii
=

total current flowing into node i
Sum of conductances at the node i

(17)

In case of Eq.(9) we have 0 < δi < 1 (i = 1, · · · , n) and
δmin > 0, and therefore we have:
Lemma 7：In the case of Eq.(9) we can verify the accuracy
of a solution x̃ without a circuit equation by Eqs.(15) –
(17). Required computation is about n2 additions and 2n
multiplications.

3. The case where some rows of A satisfy dominance
conditions with equality

Suppose in this section that gi0 = 0 at some nodes i.

Γ1 Γ2 Γ3 Γ4 Γ5

Γ0

Fig. 2 General configuration (m = 5)

We can classify all nodes of N into Γk (k = 0, 1, · · · ,m)
as follows: First let Γ0 = {0} and let Γ1 be a set of nodes
such that each node in Γ1 is directly connected (via a bold
line) to the node in Γ0. Similarly Γk is a set of nodes such
that each node in Γk is directly connected to the node in

2
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Γk−1 but not directly connected to a node in Γl (l < k − 1).
Thus Γk (k = 0, 1, · · · ,m) are uniquely determined and any
circuit can be drawn as in Fig. 2.

For simplicity we let m = 5 in this paper. Then the con-
ductance matrix A of N can be written as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 0 0 0
A21 A22 A23 0 0
0 A32 A33 A34 0
0 0 A43 A44 A45
0 0 0 A54 A55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Γ1
Γ2
Γ3
Γ4
Γ5

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(18)

Then from the definition of Γk we see that the following
important lemma holds:
Lemma 8:

(i) The dominance conditions of the rows of Γ1 are satis-
fied with inequality.

(ii) The dominance conditions of the rows of Γ2 ∼ Γm are
satisfied with equality.

(iii) Each row of the submatrices Ak+1,k (k = 1, 2,m − 1)
in Eq.(18) always has at least one nonzero element.

That is,

aii −
n∑

j�i

|ai j| = aii +

n∑
j�i

ai j = gi0(> 0) (i ∈ Γ1) (19)

aii −
n∑

j�i

|ai j| = aii +

n∑
j�i

ai j = 0 (i ∈ Γ2 ∼ Γm) (20)

3.1. Operation 1: Multiply each column of A in Eq.(18)
by positive constants

We multiply the columns of A by ρ’s as follows:

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1A11 ρ2A12 0 0 0
ρ1A21 ρ2A22 ρ3A23 0 0

0 ρ2A32 ρ3A33 ρ4A34 0
0 0 ρ3A43 ρ4A44 ρ5A45
0 0 0 ρ4A54 ρ5A55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

Â = AU (22)
U = diag [ρ1, · · · , ρ1, ρ2, · · · , ρ2, · · · , ρm, · · · , ρm])(23)

where we assume:

ρ1 < ρ2 < ρ3 < ρ4 < ρ5 (24)

and ρ’s are values to be determined later.
Assumption 2: Suppose that by choosing ρk (k =

1, 2, · · · ,m) appropriately we can make all rows of Â in
Eq.(21) satisfy the dominance conditions with inequality.

Then we can apply Lemma 7 in the previous section. So
for

R = RDom(Â) = diag [
1

â11
,

1
â22
, · · · , 1

ânn
] (25)

||RÂ − I|| < 1 is satisfied and therefore Theorem 1 can be
applied for Â. Here Theorem 1 should be modified slightly
as:
Theorem 2: If for ∃U and ∃R

||RAU − I|| < 1 (26)

is satisfied, then we have

||x∗ − x̃|| < ||U||||Rr||
1 − ||I − RAU || (27)

3.2. Determination of ρ’s in Operation 1

We have the following:
Theorem 3: We can choose ρk (k = 1, 2, · · · ,m) appropri-
ately so that Assumption 2 is satisfied.
Proof of Theorem 3)

Γk−1 Γk Γk+1

Node ν

αν βν

εν

Fig. 3 Definition of αν and βν
Let ν be a node in Γk. Referring to Fig. 3, we define αν,
βν and εν as follows:

αν ≡
∑

j∈Γν−1

gν, j, βν ≡
∑

j∈Γν+1

gν, j, εν ≡
∑
j∈Γν

gν, j (28)

aν,ν ≡ αν + βν + εν, α′ν ≡
αν
aν,ν
, β′ν ≡

βν
aν,ν
, (29)

Thus αν (or βν or εν, respectively) means the sum of con-
ductances connected from the node ν to the the nodes in
Γk−1 (Γk+1 or Γk), and α′ν (resp., β′ν) are defined as the ra-
tio of αν (resp., βν) to total conductances connected to the
node ν.

We want to determine ρ’s such that not only all of the
dominance conditions in Â are satisfied with inequality but
also δmin defined for Â may be largest. Unfortunately it
is difficult to find the optimum ρ’s without much computa-
tions. So here we give formulae obtained heuristically. The
followings are conditions for dominance conditions to hold
with inequality.

ρ1gi1 ,0 − (ρ2 − ρ1)
∑
j∈Γ2

gi1 j > 0 (i1 ∈ Γ1) (30)

(ρ2 − ρ1)
∑
j∈Γ1

gi2 , j − (ρ3 − ρ2)
∑
j∈Γ3

gi2 , j > 0 (i2 ∈ Γ2) (31)

(ρ3 − ρ2)
∑
j∈Γ2

gi3 , j − (ρ4 − ρ3)
∑
j∈Γ4

gi3 , j > 0 (i3 ∈ Γ3) (32)

(ρ4 − ρ3)
∑
j∈Γ3

gi4 , j − (ρ5 − ρ4)
∑
j∈Γ5

gi4 , j > 0 (i4 ∈ Γ4) (33)

(ρ5 − ρ4)
∑
j∈Γ4

gi5 , j > 0 (i5 ∈ Γ5) (34)

Since “
∑

j∈Γν+1
giν, j > 0 for ∃i, we see that Eqs.(30)–34) are

satisfied for choosing ρi − ρi−1(> 0) sufficiently small.
Since

δi = 1 − ηi =
âii −∑ j�i |âi j|

âii
=
Δi

âii
(35)

the problem is to find

max
ρi

[
min

i

{
Δ1

â11
,
Δ2

â22
,
Δ3

â33
, · · · , Δn

ânn

}]
(36)

Let

ρ′1 =
ρ2

ρ1
, ρ′2 =

ρ3

ρ2
, ρ′3 =

ρ4

ρ3
, ρ′4 =

ρ5

ρ4
(37)

g′i1,0 =
gi1,0

ai1,i1
, etc (38)

3
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Then from Eqs.(28), 29), (38) we have α′ν =
∑

j∈Γν−1
g′iν, j

and β′ν =
∑

j∈Γν+1
g′iν, j, and from Eqs.(30)–(34) we have

h1 ≡ min
i1

(g′i1,0 − (ρ′1 − 1)β′1 (i1 ∈ Γ1) (39)

h2 ≡ min
i2

(1 − (ρ′1)−1)α′2 − (ρ′2 − 1)β′2 (i2 ∈ Γ2) (40)

h3 ≡ min
i3

(1 − (ρ′2)−1)α′3 − (ρ′3 − 1)β′3 (i3 ∈ Γ3) (41)

h4 ≡ min
i4

(1 − (ρ′3)−1)α′4 − (ρ′4 − 1)β′4 (i4 ∈ Γ4) (42)

h5 ≡ min
i5

(1 − (ρ′4)−1)α′5 (i5 ∈ Γ5) (43)

Though the condition h1 = h2 = h3 = h4 = h5 is desirable,
it need not be satisfied rigorously for our purpose. Let

εi ≡ ρ′i − 1 ⇒ 1 − (ρ′i)
−1 =

εi
1 + εi

(44)

So Eqs.(37)–(41) can be rewritten as (In the following we
omit “mini” for a while).

α′1 − ε1β′1 = h1 > 0 (45)
ε1

1 + ε1
α′2 − ε2β′2 = h2 > 0 (46)

ε2
1 + ε2

α′3 − ε3β′3 = h3 > 0 (47)

ε3
1 + ε3

α′4 − ε4β′4 = h4 > 0 (48)

ε4

1 + ε4
α′5 = h5 > 0 (49)

Noting that h1 < α
′
1 and hi <

εi−1
1+εi−1
α′i , we introduce new

parameters pi (0 < pi < 1) such that

h1 ≡ (1 − p1)α′1, hi ≡ (1 − pi)
εi−1

1 + εi−1
α′i , (i = 2, · · · , 4)

(50)
and for convenience we set γi ≡ α′i/βi (i = 1, 2,3, 4). Then
we have from Eqs.(45)–(49)

ε1 = p1γ1 (51)

ε2 = p2γ2
ε1

1 + ε1
=

p1 p2γ1γ2

1 + p1γ1
(52)

ε3 =
p1 p2 p3γ1γ2γ3

1 + p1γ1 + p1 p2γ1γ2
(53)

ε4 =
p1 p2 p3 p4γ1γ2γ3γ4

1 + p1γ1 + p1 p2γ1γ2 + p1 p2 p3γ1γ2γ3
(54)

Then we have

εi

1 + εi
=

∏k
j=1(p jγ j)

1 +
∑i

k=1

(∏k
j=1(p jγ j)

) (i = 1, 2,3, 4) (55)

From Eqs.(45)–(49) and Eqs.(51) –(54) we have

h1 = min
i∈Γ1

(1 − p1)α′1

hi+1 = min
i∈Γi+1

(1 − pi)α′i

∏k
j=1(p jγ j

1 +
∑i

k=1

(∏k
j=1(p jγ j)

) (i = 1, · · · , 4)

h5 = min
i∈Γ5
α′5

∏4
j=1(p jγ j

1 +
∑i

k=1

(∏4
j=1(p jγ j)

) (56)

The original problem was to find maxpi min{hi}.
Lemma 9：δi can be determined by γi(= αi/βi) and α′i . Re-
quired computation =basic calculation+ (about n additions
and 5n multiplications).
Important Remark: Since all calculations in Eqs.(51)–
(56) are the sum or the multiplication of positive values,
the cancellation of significant digits does not occur.
Example 1: For the circuit in Fig. 4 we choose p = 0.5.
Then we have the following results.

α′11
= 1/3 α′12

= 1/6 α′13
= 1/3

β′11
= 1/3 β′12

= 2/6 β′13
= 1/3

α′21
= 2/2 α′22

= 1/2 α′23
= 2/3

δ1 = 0.833, δ2 = 0.307, δmin = 0.307, 1/δmin ≈ 3.26

Fig. 4 Example 1 where all conductances are 1[S]

Γ1 Γ2

11

12

13

21 22
23

Γ0

Conclusion

We gave an error bound of a solution x̃ without con-
structing circuit equations. In addition to the method in
Section 3 we can also give another method which performs
additions of rows on A. Due to the lack of space we omitted
it. In both methods the required calculation for error bound
is O(n) additions and O(n)(∼ 8n) multiplications.

Most of the results do not require the symmetry of the
coefficient matrix A and therefore is useful for more general
type of hyperdominancy.
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