
A basic interval global optimization procedure for Matlab/INTLAB

Tibor Csendes† and László Pál‡:

†Institute of Informatics, University of Szeged,
Szeged, Hungary

‡Faculty of Business and Humanities, Sapientia University,
Miercurea-Ciuc, Romania

Email: csendes@inf.u-szeged.hu, pal.laszlo@yahoo.com

Abstract—We present a simple algorithm for the bound
constrained global optimization problem implemented in
Matlab that uses the INTLAB package supporting inter-
val calculations and automatic differentiation. Accord-
ing to the numerical studies completed, the new, INTLAB
based implementation is closely as efficient as its C-XSC-
based basis algorithm – with the exception of the CPU time
needed (the longer computations are due to the interpreter
nature of Matlab).

1. Introduction

Bound constrained global optimization problems in the
form of

min
x∈X

f (x)

are common with X = {xi ∈ [xi, xi], i = 1, . . . , n}, and
xi, xi ∈ R, i = 1, . . . , n. In several cases we can assume
that the objective function, f is smooth.

Just to name some of the numerous applications of
global optimization, we point on some of our recent pub-
lications: we solved with such techniques hard mathemat-
ical problems arising in the field of qualitative analysis of
dynamical systems [2, 5, 6] and discrete geometry, for op-
timal packing of circles in the square [10, 14]. Global op-
timization methods have also been applied for theoretical
chemical problems [1], and for the evaluation of bounding
methods [15].

Matlab is a natural environment for algorithm develop-
ment and testing. Our aim was to provide an easy to use re-
liable global optimization method. We have recently com-
pleted a similar successful implementation in Matlab for
the stochastic GLOBAL procedure [7].

The algorithm investigated now uses only a subroutine
calculating the objective function as information on the
global optimization problem, i.e. the expression is not re-
quired. The procedure does not applies the gradient and
the Hessian of the objective function, although these can be
computed by the automatic differentiation facility of INT-
LAB [13]. In other words, we study now that algorithm
variant, that does not assume the differentiability of the ob-
jective function.

2. Algorithm

The branch-and-bound type method we have imple-
mented is described by Algorithm 1. This technique origi-
nates in the Numerical Toolbox for Verified Computing [8],
and it applies only a single accelerating device: the cutoff

test – in contrast to the more sophisticated technique stud-
ied in [12]. Now just natural interval extension (based on
naive interval arithmetic) was applied to calculate the in-
clusion functions.

Algorithm 1 The simple unconstrained global optimiza-
tion algorithm investigated
GlobalOptimize (f , X, ε, Lres, f ∗)
Y := X; f̃ := f (m(X)); Lres := {}; Lwork := {};
repeat

OptimalComponent(Y, k1);
Bisection(Y, k1,U1,U2);
for i := 1 to 2 do

fU := f (U i);
if f̃ < fU then next i;
if f (m(U i)) < f̃ then f̃ := f (m(U i));

Lwork := CutOffTest(Lwork, f̃);
if w(fU) < ε then Lres := Lres ∪ (U, fU);

else Lwork := Lwork ∪ (U, fU);
if Lwork , {} then Y := Head(Lwork);

until L = {};
Y := Head(Lres); f ∗ := [fY , f̃];
return Lres, f ∗;

We use only simple bisection along the widest interval
component, and no multisection and advanced subdivision
direction selection (cf. [9]). The sophisticated techniques
based on the p f ∗ heuristic algorithm parameter [3] will be
inserted in the future: the present version is planed to be
simple and easy to use. The subdivision direction is deter-
mined according to the well tested and simple A subdivi-
sion direction selection rule (also used in [3]). The algo-
rithm solves also one-dimensional problems.

For the Matlab/INTLAB implementation we have fol-
lowed closely the C-XSC code which was developed
for unconstrained global optimization by Mihály Csaba
Markót based on the algorithm documented in [11]. The

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 592 -

control structures of the two algorithms are identical, while
the vectorial array statements of Matlab were applied wher-
ever possible.

To use the new method, first install the INTLAB
package for interval arithmetic based inclusion func-
tions and verified numerical techniques. Download
the compressed archive from the respective web page
http://www.ti3.tu-harburg.de/rump/intlab/, and
follow the included guide and instructions. The installa-
tion requires a few minutes and some level of experience
in operating system script programming. Otherwise the
hints given in the user guide are sufficient. INTLAB is free
for private use and for purely academic purposes provided
proper reference is given acknowledging that the software
package INTLAB has been developed by Siegfried M.
Rump at Hamburg University of Technology, Germany
[13]. INTLAB applies a sophisticated rounding that de-
pends closely on the actual hardware. This is why it is easy
to implement on a standard PC (also in Linux), while it can-
not be used immediately on some modern workstations.

When the INTLAB package has been downloaded, de-
compress the archive, and place the files into a directory,
that should be then given as the default directory, where
Matlab finds the INTLAB related files. This can be accom-
plished by setting the Current Directory properly at the top
center position of the Matlab window. The next step is to
run the script startintlab.m from the main directory:

>> startintlab

which initiates various global variables and will do much
of the rest. In case everything went well, no error message
is obtained. Otherwise the user obtains the most important
hints how to complete the implementation procedure. Note
that you must issue the startinlab command always be-
fore using INTLAB, not only the first time.

Under Windows, we should change the system vari-
able BLAS VERSION to atlas***.dll choosing ’***’ ac-
cording to the processor type (for example the full name
is ”atlas P4.dll” for a PC with a Pentium 4 processor).
The corresponding file is located in the Matlab directory
”...\Matlab\bin\win32\”. If you have the rights of the
system administrator, then you can set the BLAS version
for all users and threads using the Environment Variables
(Control Panel → System Properties → Advanced) dialog
box. Otherwise complete the above procedure in the com-
mand line window, applying the command

set BLAS VERSION="atlas P4.dll"

and make sure that Matlab is started then from the same
place.

Under Linux we can set the new library by the command

export BLAS VERSION="atlas P4.so"

to reach the above level of readiness. The setting of the
BLAS library usually solves all the problems what is re-
ported first by the startintlab procedure.

Table 1: The numerical comparison of the C-XSC and the
INTLAB code. Dim stands for the dimension of the prob-
lem, NIT for the number of iterations, and NFE for the
number of objective function evaluations.

C-XSC code INTLAB code
Problem Dim NIT NFE NIT NFE
S5 4 84 307 83 305
S7 4 259 864 259 864
S10 4 310 1,016 313 1025
THCB 2 5,591 16,779 5,591 16,779
BR 2 149 480 149 480
RB2 2 75 250 74 247
RB5 5 2,339 7,063 2,339 7,063
L8 3 21 81 21 81
L9 4 28 109 28 109
L10 5 35 137 35 137
L11 8 141 477 141 477
L12 10 412 1,455 412 1,455
L13 2 22 81 22 81
L14 3 35 131 35 131
L15 4 52 194 52 194
L16 5 72 270 72 270
L18 7 614 2,100 614 2,100
Schw2.1 2 308 933 308 933
Schw3.1 3 32 119 31 117
Schw2.5 2 72 232 72 232
Schw2.14 4 924 3,011 924 3,011
Schw2.18 2 5,623 17,093 5,623 17,093
Schw3.2 3 110 355 106 342
Schw3.7 5 5 191 605 191 605
Griew7 7 216 729 216 729
R4 2 1,547 5,137 1,547 5,137
R5 3 355 1,235 355 1,235
R6 5 1,939 6,695 1,939 6,695

The new Matlab/INTLAB based interval global opti-
mization algorithm will also be available soon as a part of
the GLOBAL package. The latter is to be downloaded from
the

www.inf.u-szeged.hu/∼csendes/reg/regform.php

web page.
The comprised package contains all necessary files, a

suitable directory structure and also a testing environment.

3. Computational tests and comparison

The numerical comparison aimed to clear whether the
new implementation is capable to deliver similar quality re-
sults as the old one, and to measure the efficiency in terms
of the usual indicators. Hence, we have completed a com-
putational test, and compared the efficiency and the results
of the INTLAB implementation to that of a C-XSC, BIAS,
and Profil based procedure [11].

- 593 -

Table 2: The numerical comparison of the C-XSC and the
INTLAB code. Dim stands for the dimension of the prob-
lem, MLL for the maximal list length required, and CPU
for the CPU time needed in seconds.

C-XSC code INTLAB code
Problem dim MLL CPU MLL CPU
S5 4 14 0.02 13 14.20
S7 4 43 0.06 43 55.78
S10 4 58 0.17 55 93.73
THCB 2 1,128 0.36 1,128 178.58
BR 2 18 0.00 18 6.64
RB2 2 10 0.00 10 1.72
RB5 5 56 0.33 56 167.84
L8 3 8 0.00 8 1.94
L9 4 11 0.00 11 3.41
L10 5 14 0.00 14 5.22
L11 8 23 0.10 23 28.23
L12 10 44 0.71 44 111.63
L13 2 7 0.00 7 1.45
L14 3 10 0.00 10 3.09
L15 4 13 0.00 13 5.69
L16 5 16 0.01 16 9.55
L18 7 67 0.35 67 98.92
Schw2.1 2 44 0.00 44 11.63
Schw3.1 3 7 0.00 6 1.89
Schw2.5 2 7 0.00 7 1.44
Schw2.14 4 82 0.06 82 32.19
Schw2.18 2 678 0.48 678 104.73
Schw3.2 3 13 0.00 12 3.80
Schw3.7 5 5 32 0.01 32 6.59
Griew7 7 43 0.07 43 27.44
R4 2 348 0.11 348 51.39
R5 3 70 0.03 70 29.44
R6 5 226 0.48 226 264.31

For the test we used INTLAB version 5.4, Matlab
R2007a, and a PC with 1 Gbyte RAM and a 3 GHz Pen-
tium 4 processor. The test problems included all the stan-
dard global optimization functions to be minimized, and
basically all of those usually applied in comparing interval
global optimization methods. Our tables contain results re-
stricted for cases when the INTLAB based algorithm was
able to stop within 10 minutes. Otherwise the test prob-
lem set is the same as those in other extensive numerical
studies, such as [3, 4].

The results are summarized in Tables 1 and 2. The
problem names are abbreviated as usual, e.g. S5 stands for
Shekel-5, Sch3.2 for Schwefel 3.2, and R4 for Ratz-4 (cf.
[3]). The first two columns give the problem names and
their dimension. The listed efficiency indicators are the
number of iterations necessary (abbreviated as NIT), the
number of objective function evaluations (NFE), the max-
imal length of the working list (MLL), and the required
CPU time in seconds (CPU).

As compared to the numerical study published in [12],

where the stopping criterion parameter ε was set to 10−8,
now we stopped subdivision when the width of the inclu-
sion function at the actual subinterval was less than 0.01.
Our present results are then obviously much weaker than
the earlier published, but it is no wonder regarding that in
the other case first and second derivative information was
utilized as well.

Most of the efficiency indicators have the same or very
similar values for the two implementations. We discuss
here just the larger and systematic differences. The most
significant change is definitely in the CPU time needed:
the INTLAB based implementation requires on the average
ca. 543 times more time to reach basically the same result.
The ratios differ from 157 to 981, and the median of them
is 523. As a rule, these figures are somewhat smaller than
those measured for a more sophisticated algorithm variant
based on the inclusion functions of the gradient and the
Hessian as well [12]. The highest ratio values are related
to cases when the CPU time for the C-XSC version were
hardly measurably low. It is also worth mentioning, that the
lowest ratios belong to those test problems, that required
more computation. The reason for this drop in speed is that
Matlab works in interpreter mode, and thus it is no won-
der that a machine code program produced by a compiler
can reach better times. On the other hand we have to add
that we had a well readable, but less optimized coding, and
there remained much to improve exploiting the vectoriza-
tion feature of Matlab. The bottom line of this compari-
son is that although the easy use of Matlab has its price in
speed, still for practical problems the Intlab based interval
global optimization method can be a useful modeling tool
for early phases of optimization projects.

Since the number of iterations, objective function eval-
uations, and maximal working list lengths are identical for
the two algorithms for the majority of test problems, we can
certainly conclude that the algorithms are equivalent, and
there cannot be significant algorithmic differences. In the
remaining cases the slightly changing indicators are caused
by the different realizations of the rounding and other hard-
ware depending statements and functions. A smaller part
of the CPU time differences is also due to the quicker but
less precise interval operations and functions provided by
Profil/BIAS.

Summarizing our numerical results, we can state that the
computational experiences confirm that the new implemen-
tation is in several indicators (e.g. number of function eval-
uations, number of iterations, and memory complexity) in
essence equivalent to that of the old one. The CPU time
needed is as a rule by at least two order of magnitude higher
for the INTLAB version – as it can be anticipated regarding
the interpreter nature of Matlab. However, further vector-
ization coding changes in the algorithm and in the objective
functions may improve on that. In spite of the lower speed,
the new interval global optimization methods can well be
suggested as an early modeling and experimentation tool

- 594 -

for the verified solution of bound constrained global opti-
mization problems.

Acknowledgments

The present work was supported by the grants Aktion
Österreich-Ungarn 60öu6, OTKA T 048377 and T 046822.

References

[1] J. Balogh, T. Csendes, and R. P. Stateva, “Application
of a stochastic method to the solution of the phase sta-
bility problem: cubic equations of state,” Fluid Phase
Equilibria, vol. 212, pp. 257-267, 2003.

[2] B. Bánhelyi, T. Csendes, and B. M. Garay, “Op-
timization and the Miranda approach in detecting
horseshoe-type chaos by computer,” Int. J. Bifurca-
tion and Chaos, vol. 17, pp. 735-747, 2007.

[3] T. Csendes, “New subinterval selection criteria for in-
terval global optimization,” J. Global Optimization,
vol. 19, pp. 307-327, 2001.

[4] T. Csendes, “Numerical experiences with a new gen-
eralized subinterval selection criterion for interval
global optimization,” Reliable Computing, vol. 9, pp.
109-125, 2003.

[5] T. Csendes, B. Bánhelyi, and L. Hatvani, “Towards a
computer-assisted proof for chaos in a forced damped
pendulum equation,” J. Computational and Applied
Mathematics, vol. 199, pp. 378-383, 2007.

[6] T. Csendes, B. M. Garay, and B. Bánhelyi, “A veri-
fied optimization technique to locate chaotic regions
of Hénon systems,” J. of Global Optimization, vol.
35, pp. 145-160, 2006.

[7] T. Csendes, L. Pál, J. O. H. Sendı́n, and J. R. Banga,
“The GLOBAL Optimization Method Revisited,” Ac-
cepted for publication in the Optimization Letters.

[8] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz, “Nu-
merical Toolbox for Verified Computing I.” Springer-
Verlag, Berlin, 1993.

[9] R. B. Kearfott, “Rigorous global search: continuous
problems,” Kluwer, Dordrecht, 1996.

[10] M. Cs. Markót and T. Csendes, “A new verified opti-
mization technique for the ”packing circles in a unit
square” problems,” SIAM J. on Optimization, vol. 16,
pp. 193-219, 2005.

[11] M. C. Markót, J. Fernandez, L. G. Casado, and
T. Csendes, “New interval methods for constrained
global optimization,” Mathematical Programming,
vol. 106, pp. 287-318, 2006.

[12] L. Pál and T. Csendes, “A global optimization algo-
rithm for INTLAB,” Optimization Methods and Soft-
ware, submitted for publication.

[13] S. M. Rump, “INTLAB – Interval Laboratory.” In: T.
Csendes (ed.): Developments in Reliable Computing,
Kluwer, Dordrecht, pp. 77-104, 1999.

[14] P. G. Szabó, M. Cs. Markót, T. Csendes, E. Specht,
L. G. Casado, and I. Garcı́a, “New Approaches to
Circle Packing in a Square – With Program Codes,”
Springer-Verlag, Berlin, 2007.

[15] B. Tóth, J. Fernández, and T. Csendes, “Empirical
convergence speed of inclusion functions for facility
location problems,” J. of Computational and Applied
Mathematics, vol. 199, pp. 384-389, 2007.

- 595 -

	Navigation page
	Session at a glance
	Technical program

