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Abstract—We propose a method of constructing a
complex network based on a deterministic model from
a time series, in which its time structure is fully and di-
rectly incorporated. The network constructed by this
method contains time-dependent nodes and links on
which positive real numbers are assigned as weight.
The method is demonstrated by a known system and
shown to be very useful for clarifying hidden time struc-
ture embedded in the time series.

1. Introduction

Understanding the complex features of various dynami-
cal systems in the real world continues to be a crucial chal-
lenge across the physical and natural sciences. To better
understand such complicated interactions it is useful to first
transform the system into a new frame of reference. Trans-
lating a complicated time-dependent system into a complex
network is one of such approaches.

Over the past decade it has become clear that complex
networks have a vast range of applicability and give a
new perspective on various problems in the real world [1,
2, 3, 4]. We already have several works attempting to
combine time series with complex networks, such as net-
works through the correlation strength [5], recurrence net-
works [6] and cycle networks for pseudo-periodic time se-
ries [7, 8]. These approaches are proven to be effective in
understanding complicated and entangled structure of sys-
tems [5, 9].

However, these works still do not address one essen-
tial ingredient. Although systems in the real world have
various different time delay effects in principle, such ef-
fects cannot be directly treated or set in the network by
current approaches. We refer to the relationship between
terms in time series that causes these time delay effects as
“time structure.” On the other hand, the complex network
structures from time series in the existing approaches may
not always be sufficient to capture the salient features of
the underlying global interrelation structure, because these
structures are essentially built on local information such as
the temporal structures on an embedding space and correla-
tions (similarities) between each pair of time series among
many [5, 6, 9]. In addition, “no similarity” is not equivalent
to “no correlation.” Even when two signals are not similar,

these systems can still have some kind of correlated struc-
tures. To handle these, it is crucial to find a method to
translate dynamics into the network topology properly.

In this paper we introduce a method of constructing a
complex network based on deterministic model structure
from a given time series representing a (possibly nonlinear,
possibly stochastic) dynamical system. Time structure is
directly set in the complex network and the network fully
reflects the global structure of interrelation and the hierar-
chy of the model. Hence, this is the attempt to represent a
generic deterministic model as a complex network so as to
understand the deterministic dynamics of observed data.

2. Methodology

The method described here is composed of two steps:
(i) building a Reduced Auto-Regressive (RAR) model from
a given time series and (ii) constructing a complex network
from the RAR model.

2.1. Building an RAR model

Given a time series {xt}nt=1 of n observations, an RAR
model with the largest time delay w can be expressed by

x(t) = a0+a1x(t−l1)+a2x(t−l2)+· · ·+awx(t−lw)+ε(t), (1)

where ai (i = 0, 1, 2 . . . ,w) are unknown parameters, and
ε(t) is assumed to be unknown independent and identically
distributed random variables, which are interpreted as fit-
ting errors. The parameters ai are chosen to minimize the
sum of squares of the fitting errors [10].

Among the various information criteria used to find
the best (optimal) model, we employ the description
length (DL) proposed by Rissanen [11]. The DL formula
is

DL(k) = n ln
eT e
n
+ k ln n, (2)

where n is the number of data points, k is the model size
and e is the fitting errors.

2.2. Constructing a network

After building an RAR model, we transform the model
into a directed network (i) by representing each term x(t)
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at time t by a node labelled by the time and (ii) by draw-
ing an arrow directed from a node x(t − i) to the node x(t),
where the time delay term x(t−i) appears in the RAR model
for the expression of x(t). This arrow represents the influ-
ence of x(t − i) on x(t) with time delay i. We interprete
the absolute value of the parameter ai as the “influence” of
x(t − i) on x(t) and transform the influence as a “distance”
between nodes x(t) and x(t − i) using ai on the network
space; the larger the absolute value of ai, the shorter the
distance between x(t) and x(t − i). Although there may be
several ways to introduce an appropriate “distance,” we in-
troduce the following simple distance based on elementary
linear algebra 1.

Equation (1) can be interpreted as the scalar product of
the coefficient vector

~a ≡ (a1, a2, . . . , aw) , (3)

and the set of linearly independent “unit vectors”,
(x(t − l1), x(t − l2), . . . , x(t − lw)), where the constant pa-
rameter a0 and ε(t) are not used because these contain no
time information. By this interpretation, we introduce the
“angle” θi between the directions of x(t) and x(t − i) as

θi ≡ arccos

 ai√
a2

1 + a2
2 + · · · + a2

w

 . (4)

The distance we introduce should have following proper-
ties . Firstly, when vectors x(t) and x(t − i) are in the same
direction, the angle θi becomes 0 or π and the distance di

should be 0. We expect the analyticity of the “distance”
around θ = 0 and put di ≈ θi in this case. Secondly, when
the vectors x(t) and x(t − i) are perpendicular (ai = 0), the
angle θi becomes π/2 and the distance di should be infinity.
Thus di should be inversely proportional to cos θi. Finally,
the distance must always be a positive real number. Hence,
we define the distance di between the nodes x(t) and x(t− i)
as

di ≡ |tan θi| . (5)

According to Eq. (1), the nodes contained in a model are
directly connected to x(t). We refer the distance calculated
from parameters in the model, Eq. (5), as the direct dis-
tance (DD). When we take into account time evolution of
dynamical system, a pair of nodes can be connected indi-
rectly via some other nodes and we can consider the sum
of all distances through the path as the indirect distance
(ID) between these two nodes. In a network we sometimes
find a path with a shorter ID than the DD. In such a case,
we can consider that the indirect path that gives the short-
est length is the path on which the information is passed

1We understand that the “distance” introduced here depends on the
nature of the system, and other distances (e.g. inverse) may be justified
in some situations. However, we consider that this distance has broad
range of applicability because it reflects the overall balance of the size of
parameters in the model. We note that the proposed method is independent
of the definition of the “distance”

Figure 1: (Color online) Network representation of the first
15 terms (that is, x(1) to x(15)) represented by the RAR
model, Eq. (6), where the numbers on the nodes are t of x(t)
in Eq. (6). The first six nodes represented by squares are
the initial nodes. The numbers on the arrows are the direct
distances between the nodes. Note that the positions of the
nodes are irrelevant (only the topology is important). In
this figure, the length of the arrows also does not represent
the actual scale.

through most effectively and that these two nodes are es-
sentially connected through the shortest ID path. We treat
the collection of the paths that have the shortest length for
any given node pairs as the network of the system. The
network constructed in this way reveals the underlying hi-
erarchical structure of the linear model and enables us to
know whether the influence of a term may come through
other terms.

3. Numerical Example

We demonstrate the application of our algorithm and
confirm our theoretical argument with a simple example.
We begin by the following RAR model:

x(t) = 1.01 x(t − 1) − 0.61 x(t − 3) + 0.11 x(t − 6). (6)

By the method we propose here, we obtain

~a = (1.01, −0.61, 0.11) , (7)

and using the ~a we introduce a distance between the nodes,
direct distances (DDs)

~d = (0.6137, 1.6655, 10.7265) . (8)

In Fig. 1, we show the overall linkage of the network
constructed by our method from Eq. (6) within the time
interval from 1 to 15 2. The distance between nodes repre-
sents the magnitude of influence from the other nodes. Ac-
cording to the model, the nodes x(t−1), x(t−3) and x(t−6)
are directly connected with the node x(t). For example,
the nodes x(6), x(4) and x(1) are directly connected with

2The reason to use the time up to 15 is simply to make the figure simple
enough to show the linkage clearly.
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Figure 2: (Color online) The optimal path network con-
structed from the model, Eq. (6). The nodes shown are
from x(t) to the one with the largest time delay, x(t − 6).
Note that the node x(t − 6) is not directly connected to x(t)
but connected through x(t−3). The gray color corresponds
to terms included in the model and the white color to terms
within the largest time delay but not included in the model,
respectively. The numbers on the arrows are the direct dis-
tances between the nodes. We show all terms within the
largest time delay to show the flow of time in the model
without gaps and the structure more clearly.

the node x(7) in Fig. 1. However, we note that there are
cases where the distance of the directly connected path is
not always the shortest. For example, the optimal (shortest)
path from x(9) to x(15) is the one via x(12), while the last
node x(15) is directly connected with x(9) as Fig. 1 shows.
Since both of the direct distances (DDs) from x(9) to x(12)
and from x(12) to x(15) are 1.67, the indirect distance (ID)
from x(9) to x(15) is the summation, 1.67 + 1.67 = 3.34,
which is much shorter than the DD from x(9) to x(15),
10.73. We can thus conclude that the most significant in-
fluence of the term x(t − 6) to x(t) is not the direct one but
that comes through the term x(t − 3).

To show this situation more clearly, we show in Fig. 2 the
set of most optimal paths to node x(t) from the nodes within
the model (between x(t) and x(t − 6)). Figure 2 shows that
the node x(t) is directly connected with x(t−1) and x(t−3),
and the connection from x(t−6) is indirect via x(t−3). This
is an outcome of the global structure of interrelation and hi-
erarchy between terms of the model, Eq. (6), and the inter-
play between the sizes of the parameters and the network
topology reveals the time structure. Note that we cannot
extract this information by simply examining Eq. (6).

4. Summary

We describe an algorithm to construct complex networks
with time structure based on deterministic model structure
from time series. In this algorithm a linear model contain-
ing various terms of different time delays is transformed
into network topology. The advantage of this method over
the existing ones is that the global structure of the relation-
ship between terms in a time series model is directly trans-
lated to the topology of the corresponding complex net-
work. By extracting the optimal paths for the constructed
network, we can find the global structure and hierarchy be-

tween terms. In addition, complex networks constructed by
the proposed method consists of temporal nodes. Our argu-
ments and computational examples show the effectiveness
of introducing complex networks with time structure and
that the proposed method has a wide range of applicabil-
ity and provides us profound insights in investigating time
dependent phenomena.
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mechanics of complex networks. Reviews of Modern
Physics, 74:47–97, 2002.

[4] M. E. J. Newman. The structure and function of com-
plex networks. SIAM Review, 45:167–256, 2003.

[5] K. Yamasaki, A. Gozolchiani, and S. Havlin. Climate
networks around the globe are significantly affected
by el niño. Phys. Rev. Lett, 100:228501, 2008.

[6] N. Marwan, J. F. Donges, Y. Zou, R. V. Donner, and
J. Kurths. Complex network approach for recurrence
analysis of time series. Phys. Lett. A, 373:4246–4254,
2009.

[7] J. Zhang and M. Small. Complex network from pseu-
doperiodic time series: Topology versus dynamics.
Phys. Rev. Lett, 96:238701, 2006.

[8] X. Xu, J. Zhang, and M. Small. Superfamily phe-
nomena and motifs of networks induced from time
series. Proceedings of the National Academy of Sci-
ences of the United States of America, 105:19601–
19605, 2008.

[9] M. Small, J. Zhang, and X. Xu. Transforming
time series into complex networks. In Complex Sci-
ences, pages 2078–2089. Springer Berlin Heidelberg,
Shanghai, China, 2009.

[10] K. Judd and A. I. Mees. Embedding as a modeling
problem. Physica D, 120:273–286, 1998.

[11] J. Rissanen. Stochastic Complexity in Statistical In-
quiry. World Scientific, Singapore, 1989.

- 692 -


	Navigation page
	Session at a Glance
	Technical Program

