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Abstract—In this paper, the geodesic distance is applied
to relational clustering methods. First, it is shown that con-
ventional methods are based on respective three types of re-
lational clustering algorithms among nine ones, and the six
rests of the nine ones with the geodesic distance are pro-
posed. Second, geodesic dissimilarity is proposed by as-
signing the power of the Euclidean distance to the weight
of the neighborhood graph of data. Numerical examples
show that the proposed geodesic-dissimilarity-based rela-
tional clustering algorithms successfully cluster the data
that conventional squared-Euclidean-distance-based ones
cannot.

1. Introduction

Fuzzy c-means (FCM) [1] is a well-known fuzzy clus-
tering method that is derived from hard c-means (HCM),
also called as k-means. Among the many FCM variants
proposed thus far, one is the FCM algorithm based on the
concept of regularization by entropy [2]. This algorithm is
called entropy regularized FCM (eFCM) and is discussed
not only because of its usefulness but also because of its
mathematical relationships with other techniques. We call
the FCM proposed in [1] standard FCM (sFCM) in order to
distinguish it from eFCM.

For HCM, sFCM, and eFCM, similar clustering mod-
els for relational data can be developed. It should be
noted that neither object data nor cluster centers are avail-
able in relational clustering. Hence, the distance be-
tween data points and cluster centers that appear in HCM,
sFCM, and eFCM cannot explicitly be computed. There
are two methods to overcome this problem: one is to
restrict the solution space and the other is to implicitly
compute the object data and cluster centers. The former
method is called hard c-medoids (HCMdd), standard fuzzy
c-medoids (sFCMdd) [3], or entropy regularized fuzzy c-
medoids (eFCMdd), respectively, based on HCM, sFCM,
or eFCM. The latter is called relational HCM (RFCM),
standard relational FCM (sRFCM) [4], or entropy regu-
larized relational FCM (eRFCM) [5], respectively. The
kernelization of HCM, sFCM, and eFCM, called kernel
HCM (K-HCM) [6], kernel sFCM (K-sFCM), and kernel
eFCM (K-eFCM) [7], can be also applied to relational data
if a dissimilarity-based kernel, for example, a Gaussian ker-
nel, is used.

The correct identification of clusters depends on the defi-
nition of dissimilarity. The choice of the dissimilarity mea-
sure determines the cluster shape, and therefore, it deter-
mines the success of a clustering algorithm on the specific
application domain. As one such choice, the geodesic dis-
tance has been applied to sFCMdd [8], K-eFCM [9], and
RHCM [10]. One of our two objectives is to apply the
geodesic distance to other six types of relational cluster-
ing methods such as HCMdd, eFCMdd, K-HCM, K-sFCM,
sRFCM, and eRFCM.

The geodesic distance is computed as the total weight of
the shortest weighted path on the neighborhood graph of a

data set, where we have the degree of freedom, that is, the
number or maximal distance of a neighborhood, and the
weight of the edge. While the Euclidean distance is usu-
ally assigned as the weight of the edge as in [8] and [9], a
density scaling is used in [10]. In this paper, we consider
another weight, the power of Euclidean distance, typically
the squared-Euclidean distance. The considered measure
is no longer the geodesic distance but geodesic dissimilar-
ity because it does not satisfy the triangular inequality. The
other of our two objectives is to apply this geodesic dissim-
ilarity to nine types of relational clustering methods such as
HCMdd, sFCMdd, eFCMdd, K-HCM, K-sFCM, K-eFCM,
RHCM, sRFCM, and eRFCM.

The remainder of this paper is organized as follows. In
the second section, we define some notations, and intro-
duce some relational clustering algorithms and the concept
of geodesic distance; these are used in our proposed meth-
ods. In the third section, we propose applying the geodesic
distance to six types of relational clustering methods, and
also propose new geodesic dissimilarity that can be applied
to nine types of relational clustering algorithms. In the
fourth section, we present some numerical examples. In
the last section, we conclude this paper.

2. Preliminaries

2.1. Fuzzy Clustering

In this subsection, we introduce nine conventional meth-
ods of relational clustering; these are used in our proposed
methods that is described in the next section. The intro-
duced methods are classified according to the three origi-
nal clustering algorithms — HCM, sFCM, or eFCM — or
according to how the relational data is used — by using
medoids, by transforming the optimization problem, or by
using dissimilarity-based kernel function.

For a given data set x = {xi | i ∈ {1, . . . , N}},
HCMdd, sFCMdd, eFCMdd, RHCM, sRFCM, and eR-
FCM assume that the dissimilarity data matrix R ∈ R

N×N

is given, and K-HCM, K-sFCM, and K-eFCM assume that

the kernel matrix K ∈ R
N×N is given. The membership

by which xi belongs to the j-th cluster is denoted by ui,j

(i ∈ {1, · · · , N}, j ∈ {1, · · · , C}) and the set of ui,j is

denoted by u ∈ R
N×C ; this is called the partition matrix.

Hard c-means (HCM) is the algorithm obtained by solv-
ing the following optimization problem:

minimize
u,v

JHCM(u, v) (1)

subject to

C
∑

j=1

ui,j = 1, (2)

where

JHCM(u, v) =
N
∑

i=1

C
∑

j=1

ui,jdi,j (3)

di,j =‖xi − vj‖
2
2. (4)
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Standard fuzzy c-means (sFCM) is the algorithm obtained
by solving the following optimization problem:

minimize
u,v

N
∑

i=1

C
∑

j=1

um
i,jdi,j (5)

subject to Eq. (2) and (4). Entropy regularized fuzzy c-
means (eFCM) is the algorithm obtained by solving the
following optimization problem:

minimize
u,v

JHCM + λ−1
N
∑

i=1

C
∑

j=1

ui,j log(ui,j) (6)

subject to Eq. (2) and (4).
Hard c-medoids (HCMdd) is the algorithm obtained by

solving the optimization problem (1) subject to Eq. (2), (4),
and

vj ∈ x. (7)
Standard fuzzy c-medoids (sFCMdd) is the algorithm ob-
tained by solving the optimization problem (5) subject
to Eq. (2), (4), and (7). Entropy regularized fuzzy c-
medoids (eFCMdd) is the algorithm obtained by solving
the optimization problem (6) subject to Eq. (2), (4), and
(7).

Kernel hard c-means (K-HCM) is the algorithm obtained
by solving optimization problem (1) subject to Eq. (2) and

di,j = ‖Φ(xi) − Wj‖H. (8)
Kernel standard fuzzy c-means (K-sFCM) is the algo-
rithm obtained by solving optimization problem (5) sub-
ject to Eq. (2) and (8). Kernel entropy regularized fuzzy
c-means (K-eFCM) is the algorithm obtained by solving
optimization problem (6) subject to Eq. (2) and (8).

Relational hard c-means (RHCM) is the algorithm ob-
tained by solving the following optimization problem:

minimize
u

JRHCM, (9)

where

JRHCM(u) =

C
∑

j=1

N
∑

i=1

N
∑

k=1

ui,juk,jri,k/

(

2

N
∑

t=1

ut,j

)

,

(10)
subject to Eq. (2), and ri,k is given. Standard relational
fuzzy c-means (sRFCM) is the algorithm obtained by solv-
ing the following optimization problem:

minimize
u

C
∑

j=1

N
∑

i=1

N
∑

k=1

um
i,ju

m
k,jri,k/

(

2

N
∑

t=1

um
t,j

)

(11)

subject to Eq. (2), and ri,k is given. Entropy regularized re-
lational fuzzy c-means (eRFCM) is the algorithm obtained
by solving the following optimization problem:

minimize
u

JRHCM(u) + λ−1
N
∑

i=1

C
∑

j=1

ui,j log(ui,j) (12)

subject to Eq. (2), and ri,k is given.
HCMdd, sFCMdd, eFCMdd, RHCM, sRFCM, eRFCM,

K-HCM, K-sFCM, and K-eFCM are given by the following
algorithm.

Algorithm 1

STEP 1. Set C; set m for sFCMdd, K-sFCM, and sR-
FCM; set λ for eFCMdd, K-eFCM, and eRFCM; set r
for RHCM, sRFCM, and eRFCM; set K for K-HCM,
K-sFCM, and K-eFCM; and set u.

STEP 2. Calculate

vj = arg min
k

N
∑

i=1

ui,jdi,k (13)

for HCMdd and eFCMdd;

vj = arg min
k

N
∑

i=1

um
i,jdi,k (14)

for sFCMdd;

vj =

N
∑

i=1

ui,jei/

(

N
∑

i=1

ui,j

)

(15)

for RHCM, eRFCM, K-HCM, and K-eFCM; and

vj =

N
∑

i=1

um
i,jei/

(

N
∑

i=1

um
i,j

)

(16)

for sRFCM and K-sFCM.

STEP 3. Calculate the membership

ui,j =

{

1 (j = arg min{di,k}),
0 (otherwise)

(17)

for HCMdd;

ui,j = 1/

C
∑

k=1

(

di,j

di,k

)1/(m−1)

(18)

for sFCMdd;

ui,j =
exp(−λdi,j)

∑C
k=1 exp(−λdi,k)

(19)

for eFCMdd;

ui,j = 1/

C
∑

k=1

(

(ei − Wj)
TK(ei − Wj)

(ei − Wk)TK(ei − Wk)

)1/(m−1)

(20)
for K-sFCM;

ui,j = 1/

C
∑

k=1

(

(RWj)i − WT
j RWj

(RWk)i − WT

k Wk

)1/(m−1)

(21)
for sRFCM;

ui,j =
exp(−λ(ei − Wj)

TK(ei − Wj))
∑C

k=1 exp(−λ(ei − Wk)TK(ei − Wk))
(22)

for K-eFCM;

ui,j =
exp(−λ((RWj)i − WT

j RWj))
∑C

k=1 exp(−λ((RWk)i − WT
j RWk))

(23)

for eRFCM.

STEP 4. If (u, v) is convergent, terminate this algorithm.
Otherwise, return to STEP 2.

2.2. Geodesic Distance

In this subsection, the two types of geodesic distance, k-
geodesic distance and ε-geodesic distance, are introduced.

The ε-neighborhood of a point x ∈ X is defined as
Nε(x) = {z ∈ X | ‖x − z‖2 ≤ ε}. The k-neighborhood
of a point x ∈ X is the set of k closest points to x in
the ℓ2 norm sense: Nk(x) ⊂ X such that |Nk(x)| = k
and maxz∈Nk(x) ‖x − z‖2 ≤ minz∈Z\Nk(x) ‖x − z‖2.

The k-neighborhood graph of X is an undirected graph
whose the vertices are X and whose the edges (xi, xĩ) ex-

ist if xi ∈ Nk(xĩ) or xĩ ∈ Nk(xi). The ε-neighborhood
graph of X is an undirected graph whose the vertices are
X and whose the edges (xi, xĩ) exist if xi ∈ Nε(xĩ) or

xĩ ∈ Nε(xi). Assume a symmetric matrix D ∈ R
N×N of

non-negative weights on the edges of Gk . The k-geodesic
distance from any point x to any point x̃ is defined as the
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total weight of the shortest weighted path from x to x̃ on
Gk , which is denoted by δGk,D(x, x̃). The ε-geodesic dis-
tance from any point x to any point x̃ is defined as the total
weight of the shortest weighted path from x to x̃ on Gε,
which is denoted by δGε,D(x, x̃).

3. Proposed Method

One of our two objectives in this paper is to show that
conventional geodesic-distance-based clustering methods
are based on respective three types of relational clustering
algorithms among nine ones, and to propose the six rests
of the nine ones with the geodesic distance. The other is to
propose a new dissimilarity based on the geodesic distance,
and to apply conventional relational clustering methods, as
described in the second section.

3.1. Six types of Geodesic-Distance-based Clustering

The geodesic distance has been applied to some re-
lational clustering algorithms [8]–[10]. sFCMdd in [8],
K-eFCM in [9], and RHCM in [10] were used with the
geodesic distance. The survey of relational clustering
methods with the geodesic distance is summarized in Ta-
ble 1. The symbol “–” in this table indicates that we
could not find relevant literatures. Therefore, we propose
these methods by applying the geodesic distance, that is,
HCMdd, eFCMdd, K-HCM, K-sFCM, sRFCM, and eR-
FCM (Algorithm 1).

Table 1: Conventional Geodesic-Distance-based Cluster-
ing Methods

Medoids Relational Kernel
HCM – [10] –
sFCM [8] – –
eFCM – – [9]

3.2. New Dissimilarity based on Geodesic Distance

xi
x

ĩ

x
î

Figure 1: δG∞,D(2)(xi, xĩ) is less than the squared-

Euclidean distance between them if there exists a point xx̂

in the sphere with center (xi + xĩ)/2 and radius ‖xi −
xĩ‖2/2, as shown in Fig. 1

The geodesic distance is computed as the total weight of
the shortest weighted path on the neighborhood graph of
a data set, where we have the degree of freedom, that is,
the number or the maximal distance of the neighborhood,

and the weight of the edge. While the Euclidean distance
is usually assigned as the weight of the edge in [8] and [9]
as

Di,̃i = ‖xi − xĩ‖2, (24)

a density scaling is used in [10].

xi
x

ĩ

q > 2

q = 2

1 < q < 2

q < 1

Figure 2: This sphere,
the border being where
δG∞,D(q)(xi, xĩ) is less than

‖xi − xĩ‖
q
2, is inflated in the

direction orthogonal to the
segment xi–xĩ with q > 2,
deflated with q < 2, and
degenerate with q ≤ 1.

In this paper, we pro-
pose another weight, the
power of Euclidean dis-
tance:

D
(q)

i,̃i
= ‖xi − xĩ‖

q
2

(25)
with a parameter q. If
q = 2, the weight
is the squared-Euclidean
distance

D
(2)

i,̃i
= ‖xi − xĩ‖

2
2.

(26)
The proposed measure is
no longer the geodesic
distance but geodesic
dissimilarity because
it does not satisfy the
triangular inequality.
The proposed geodesic
dissimilarity δG∞,D has
the following proper-
ties. δG∞,D(2)(xi, xĩ)
is less than the squared-
Euclidean distance
between them if there
exists at least one point
in the sphere with center
(xi + xĩ)/2 and radius
‖xi − xĩ‖2/2, as shown in Fig. 1. This sphere, the border

being where δG∞,D(q)(xi, xĩ) is less than ‖xi − xĩ‖
q
2, is

inflated in the direction orthogonal to the segment xi–xĩ
with q > 2, deflated with q < 2, and degenerate with
q ≤ 1, as shown in Fig. 2. δG∞,D(q)(xi, xĩ) is minimal if

the point xî is at the midst between xi and xĩ. Furthermore,
if there exist s points on the segment xi–xĩ, as shown in
Fig. 3, δG∞,D(q)(xi, xĩ) tends to zero as s → ∞. We

propose this geodesic dissimilarity for use in clustering
algorithms (Algorithm 1).

xi
x

ĩ

s points

Figure 3: δG∞,D(xi, xĩ) tends to zero as s → ∞ if there
exist s points on the segment xi–xĩ.

4. Numerical Example

In this section, we show some examples of clustering
using our proposed methods. The fuzzifier parameters are
fixed as m = 2 in sFCM-based methods and λ = 1/2 in
eFCM-based methods. As a kernel function, a Gaussian
kernel is selected with the kernel parameter σ2 = 0.002. In
each example, 100 trials for the proposed algorithm with
randomly different initializations are tested and the solu-
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tion with the minimal objective function value is selected
as the final result. We consider clustering the data shown
in Fig. 4 into two moon-shaped clusters. This data set
is constructed using 300 elements in the two-dimensional
Euclidean space. First, we see that all algorithms (Algo-

 0
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 0  50  100  150  200  250  300  350  400  450  500

Data

Figure 4: Data

rithm 1) with the squared-Euclidean distance as the dis-
similarity fail to cluster correctly; the result of sRFCM-
based methods is shown in Fig. 5, where the plus symbol
indicates one cluster and the cross symbol indicates the
other. This figure indicates that the each inside edges of
the moons are mis-clustered with each other.

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250  300  350  400  450  500

x
2

x1
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Cluster #2

Figure 5: Mis-clustering result by Algorithm 1 with the
squared-Euclidean distance

Next, we use the proposed geodesic dissimilarity with
q = 2 instead of the squared-Euclidean distance in Al-
gorithm 1 and we obtain the desired clustering results,
as shown in Fig. 6. Thus, this example shows that the
proposed geodesic-dissimilarity-based algorithms achieve
the successful clustering results for the data for which the
conventional squared-Euclidean-distance-based algorithms
fail.

5. Conclusion

In this paper, we considered applying the geodesic dis-
tance to clustering methods. First, we showed that conven-
tional methods were based on respective three types of rela-
tional clustering algorithms among nine ones, and we pro-
posed the six rests of the nine ones with the geodesic dis-
tance. Second, we proposed the geodesic dissimilarity by
assigning the power of the Euclidean distance to the weight
of the neighborhood graph of data. Through numerical ex-
amples, we found that the proposed geodesic-dissimilarity-
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Figure 6: Successful clustering Result

based relational clustering algorithms achieve successful
clustering results for the data for which the conventional
squared-Euclidean-distance-based algorithms fail. In fu-
ture works, (1) we intend to investigate the property of the
parameter in the proposed geodesic dissimilarity, and (2)
test the differences between clustering features based on
the differences among relational clustering algorithms.
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