
Learning a simple multilayer perceptron with PSO

Riku Takato† and Kenya Jin’no†

†Graduate School of Integrative Science and Engineering, Tokyo City University
1-28-1 Tamazutumi, Setagaya, Tokyo 158-8557, Japan

Email: g2281436@tcu.ac.jp, kjinno@tcu.ac.jp

Abstract—In this article, we attempt to learn the pa-
rameters of a multi-layer perceptron (MLP) using the parti-
cle swarm optimization (PSO) method which is one of the
approximate solution methods for optimization problems
without using the derivative information of the objective
function. We use the gradient method and PSO to learn to
classify a linearly inseparable data set with an MLP in the
middle layer with a small number of neurons. As a result,
we experimentally confirm that PSO outperforms gradient-
based learning.

1. Introduction

In recent years, multilayer perceptrons (MLP) have at-
tracted attention for their excellent function approximation
ability, and MLP is used to solve many problems in image
processing and natural language processing. MLP consists
of some layers, and each layer consists of plural neurons
that have nonlinear activation functions. The function ap-
proximation ability of MLP is acquired by learning weight
parameters using input-output data for training. Learning
of the weight parameters is accomplished by minimizing
the loss function, which is defined as the difference be-
tween the output of MLP and the expected output, as in
other machine learning methods. Generally, the loss func-
tion of MLP is non-convex. The optimization of such a
non-convex function is performed by the gradient method,
which iteratively searches for a solution based on the gra-
dient of the loss function. In particular, the stochastic gra-
dient descent method is known to be effective, and current
MLP training is based on the stochastic gradient descent
method. However, the stochastic gradient descent method
does not guarantee convergence to the minimum solution of
the non-convex loss functions and is sensitive to the initial
parameter values of the loss functions. Also, it is difficult
to reach the optimal solution of the objective function by
the gradient method because there are countless local so-
lutions, plateaus, and saddle points. However, it has been
suggested[2] that local solutions exist in the vicinity of the
optimal solution, and it has also been reported[3] that the
stochastic gradient method can converge to the optimal so-
lution if the network consists of a sufficiently large number
of neurons.

ORCID iDs Riku Takato: 0000-0003-4563-4202, Kenya Jin’no:
0000-0002-0431-5769

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2
0.4

0.6
0.8

1.0 0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure 1: 3D ExOR: The input is 3-dimensional, and the
number of labels is 4.

Since these results suggest that gradient-based learning
is successful in systems composed of many neurons, recent
MLP has become deep and the number of constituent neu-
rons has increased. As the number of neurons increases,
the amount of memory required increases and the learning
time becomes longer.

On the other hand, it is essential from the edge comput-
ing point of view to realize excellent recognition functions
by MLP with a small number of neurons. Therefore, to
converge to the optimal solution of the objective function
even with a small number of neurons, we attempt to learn
the parameters of the MLP with PSO[1], which does not
require information on the derivative of the objective func-
tion.

2. Learning by PSO

PSO is an algorithm[1] that searches for the parameters
that give the optimal value of the objective function in the
parameter space with multiple particles exchanging infor-
mation with each other and is one of the meta-heuristic
solution methods that do not require the derivative of the

– 470 –

2022 International Symposium on Nonlinear Theory and Its Applications,
NOLTA2022, Virtual, December 12-15, 2022

This work is licensed under a Creative Commons Attribution NonCommercial, No Derivatives 4.0 License.

https://orcid.org/0000-0003-4563-4202
https://orcid.org/0000-0002-0431-5769
https://orcid.org/0000-0002-0431-5769


4 2 0 2 4

4

2

0

2

4

Figure 2: Quadruple Circles: The input is 2-dimensional,
and the number of labels is 4.

objective function. Such PSO is used to learn the parame-
ters of MLP. In this article, we focus on some classification
problem that is not linearly separable. We consider the fol-
lowing three types of classification problems: 1) 3D ExOR,
2) Quadruple Circles, and 3) MNIST.

2.1. 3D ExOR

The 3D ExOR problem is a linearly inseparable problem
that classifies eight different inputs in three dimensions into
four classes, as shown in Fig. 1.

2.2. Quadruple Circles

The Quadruple Circles problem is a linearly insepara-
ble problem that classifies two-dimensional inputs into four
classes as shown in Fig. ??.

2.3. MNIST

Based on reducing the image size of the 28x28x1 input
image data to a 2-dimensional latent variable by convolu-
tional operations, we make a CNN system that classifies 10
different classes from this 2-dimensional latent variable to
10 outputs using the Softmax function. This CNN is trained
on 10 different handwritten digit images from MNIST [5]
to a recognition accuracy of up to 100% for the training
data. After training, the two latent variables in the layer
consisting of only two neurons before the Softmax layer
are colored for each handwritten input digit image to ob-
tain the distribution as shown in Fig. ??. As is clear in Fig.
3, MNIST handwritten digit images can be classified into
clusters in a two-dimensional latent space. Therefore, we

Figure 3: Quadruple Circles: The input is 2-dimensional,
and the number of labels is 4.

named the problem of classifying this 2-dimensional data
into 10 classes as MNIST in this article.

2.4. MLP

For the three types of problems described above, we
trained the MLP with PSO so that it could perform clas-
sification.

For the 3D ExOR problem, the MLP used was 3 neu-
rons in the input layer, 2 neurons in the middle layer, and
4 neurons in the output layer, with the ReLU function as
the activation function in the middle layer and the Softmax
function as the activation function in the output layer.

For the Quadruple Circles problem, the ReLU function
was used for the activation function in the middle layer and
the Softmax function for the activation function in the out-
put layer for 2 neurons in the input layer, 2 neurons in the
middle layer, and 4 neurons in the output layer.

For the MNIST problem, 2 neurons in the input layer and
10 neurons in the output layer, using the Softmax function
as the activation function in the output layer.

The coupling between each layer was trained by PSO or
gradient method.

3. PSO

PSO is one of the most famous meta-heuristic optimiza-
tion methods. The original PSO have been propose by
Eberhart and Kennedy in 1995.[1]. The original PSO is
described by the following equation.

Vi(t + 1) = wVi(t) + c1R1(t)V pa
i (t) + c2R2(t)Vga (t)

Xi(t + 1) = Xi(t) + Vi(t + 1)
V pa

i (t) = Pbesti(t) − Xi(t)
Vga (t) = Gbest(t) − Xi(t)

(1)

– 471 –



where Xi(t) and Vi(t) denote the location and the velocity of
the i-th particle at t-th iteration, respectively. Gbest(t) is the
global best, which is the parameter information that gives
the best value of the output accuracy within the swarm
at t-th iteration, and Pbesti(t) is the personal best, which
is the parameter information that gives the best value of
the output accuracy for the i-th particle at t-th iteration.
V pa

i (t),Vga (t) are vectors toward Pbesti(t) and Gbest(t), re-
spectively. w represents an inertia parameter. c1 and c2
are acceleration parameters, and R1(t) and R2(t) are time-
variant random number parameters.

PSO is a very simple system, but it can efficiently search
for the optimal solution without gradient information of the
objective function. In practice, however, it is known that
although the search to the vicinity of the optimal solution
is very fast, it is difficult to improve the accuracy of the
solution after that.

To solve these problems in this paper we propose two
types of PSO. One is to perturb the positional information
of each particle, and the other is to add noise to the normal
distribution before giving the velocity. These methods are
aimed at improving the ability of each particle to search in
the neighborhood of the best solution it has found, and at
solving the problem of all particles converging at the end
of the search, which limits the scope of the search.

3.1. PSO dist

To prevent premature convergence of the PSO, a pertur-
bation is applied to particles of the PSO[4]. The perturba-
tion is given by Eq. (2).

Vi(t + 1) = wVi(t) + c1R1V pa
i (t) + c2R2Vga (t)

Xi(t + 1) = Xi(t) + Vi(t + 1) + A(t + 1) cos θi(t + 1)
θi(t + 1) = θi(t) + γ cos θi(t) +C
A(t + 1) = A(t) + B

(2)
where θ(t) represents the internal state variable and A(t)
is a function that controls the magnitude of the micro-
perturbation. B is a parameter that controls the magnitude
of tangential motion so that A(t) increases over time but
does not become too large.

3.2. PSO q

As another way to prevent premature convergence of the
PSO, we consider adding perturbations to the velocity. The
perturbation is given by Eq. (3).

Vi(t + 1) = wVi(t) + c1R1V pa
i (t) + c2R2Vga (t)

Xi(t + 1) = Xi(t) + R3 + Vi(t + 1)
R3 ∼ N(0, 0.0625)

(3)

where R3 is a random parameter that follows a normal dis-
tribution.

We observe the effect of adding normally distributed
noise before giving velocity.

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Adam
PSO
PSO_dist
PSO_q

Figure 4: Change in output accuracy at each training step
when using ”3D ExOR”

4. Experiments

To compare the results of applying PSO and the normal
gradient method for training MLP we carry out three ex-
periments by using above problems. First, we experiment
with 3D ExOR. The accuracy results for each epoch during
learning are shown in Fig. 4. The blue line represents the
results of learning with the gradient-based method (adam).
The remaining three graphs are the results of training MLP
with PSO. The orange line represents the results of regular
PSO, the green line represents the results of PSO dist, and
the red line represents the results of PSO q. PSO produced
the best results in this experiment. The gradient method re-
sulted in no update in accuracy because it may be initially
trapped in the local solution.

Next we carry out the experiment with Quadruple Circle.
The results of the experiment are shown in Fig. 5. In this
case, PSO gives the best results, too. We can observe some
oscillations in the results with the gradient method, but the
accuracy of the solution is not significantly updated.

Finally, we carry out the experiment using MNIST. This
problem can be viewed as learning only the final stage part
of the MNIST handwritten digit recognizer in the CNN.
The training CNN that created this dataset was able to train
this part using the gradient method, and the accuracy, in
this case, is 100%. Again, PSO produced the best results
in this case. However, the gradient method did not achieve
100% accuracy when this part of the dataset was extracted
and trained with the gradient method. This point needs to
be clarified in the future, as it has not been fully discussed.

5. Conclusions

We used PSO to learn the parameters of an MLP con-
sisting of a small number of neurons. As a result, we con-

– 472 –



0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Adam
PSO
PSO_dist
PSO_q

Figure 5: Change in output accuracy at each training step
when using ”Quadruple Circle”

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Adam
PSO
PSO_dist
PSO_q

Figure 6: Change in output accuracy at each training step
when using ”MNIST”

firmed that PSO dist can learn the parameters of neural net-
works better than the conventional gradient method such as
adam when the number of neurons in the hidden layer is
small and there are many local solutions to the loss func-
tion. Also, we confirmed that PSO can improve by giving
perturbation and using loss function value. Although we
have focused on the simplest two-class classification prob-
lems, our next task is to apply PSO to multi-class classifi-
cation problems and confirm its performance.

Acknowledgments

This work was supported by JSPS KAKENHI Grant-in-
Aid for Scientific Research (C) Number: 20K11978. Part
of this work was carried out under the Cooperative Re-
search Project Program of the Research Institute of Elec-
trical Communication, Tohoku University.

References

[1] J. Kennedy, R. Eberhart, ”Particle Swarm Opti-
mization”. Proc. ICNN 1995, pp. 1942–1948, 1995.
doi:10.1109/ICNN.1995.488968

[2] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous,
Y. LeCun, ”The Loss Surfaces of Multilayer Net-
works,” Proc. AISTATS 2015, pp. 192-204, 2015.
https://arxiv.org/abs/1412.0233

[3] Z. A-Zhu, Y. Li, Z. Song, ”A Convergence The-
ory for Deep Learning via Over-Parameterization,”
Proc. ICML, PMLR vol. 97, pp. 242-252, 2019.
https://arxiv.org/abs/1811.03962

[4] K. Jin’no, ”Analysis of particle swarm op-
timization by dynamical systems theory,”
NOLTA, vol. 12, no. 2, pp. 118-132, 2021.
https://doi.org/10.1587/nolta.12.118

[5] THE MNIST DATABASE of handwritten digits,
http://yann.lecun.com/exdb/mnist/

– 473 –


