
Constructing State Machine Models by Using Petri Nets for the Extended
ROOM Method

Toshiyuki Miyamoto†, Hiroyuki Kurahata†, Taku Fujii‡, and Sadatoshi Kumagai†

†Graduate School of Engineering, Osaka University, Osaka, Japan
‡Software Engineering Center, Osaka Gas Info. Syst. Res. Inst., Osaka, Japan

Email: miyamoto@eei.eng.osaka-u.ac.jp

Abstract—Service Oriented Architecture is an architec-
ture style to build up a large-scale networked system com-
posed of a set of components or functions, each of which
is called a service. The Extended ROOM method has been
proposed as a method to generate behavioral model of a
system based on SOA and to validate the system on the be-
havioral model from the early state of system development.
In this paper, we proposed a method to generate state ma-
chine models of the target system by using Petri nets.

1. Introduction

Service Oriented Architecture (SOA)[1] is an architec-
ture style to build up a large-scale networked system com-
posed of a set of components or functions, each of which is
called a service. Recently, SOA attracts attention because
of the expectation to reduce time and cost of information
systems development. Since application area of SOA in-
cludes mission critical systems such as the business pro-
cess management system, correctness assurance of the de-
veloped system is important.

The Real-time Object-Oriented Modeling, ROOM[2] for
short, is well-known for both an object-oriented language
and a methodology based on the language to the specifi-
cation, design, and construction of software for distributed
real-time systems. In ROOM, high-level architectures are
expressed by using a simple graphical notation, and also
by using UML class, collaboration, state machine and se-
quence diagrams[3]. The functionality of distributed entity
is realized by the state machine diagram, and their interac-
tion can be shown as the sequence diagram. In UML2.0,
a collaboration diagram is a kind of composite state dia-
gram[4], therefore we use the composite state diagram in-
stead of the collaboration diagram.

In the early stage of system development it is not easy to
define state machine models, SMs for short, of a distributed
entity due to the following two essential difficulties for de-
velopers. At first, there is huge semantic gap between re-
quirements and state machine models. Secondly, not all de-
velopers are familiar with the state machine diagram. Jon
et al.[5] proposed a generation method of SMs from se-
quence diagrams and Object Constraint Language (OCL).
Leue et al.[6] proposed a generation method of SMs and
ROOM models from Message Sequence Charts. Liang et

al.[7] survey studies of these generation method of SMs
from scenarios, and they classify such methods based on
class of scenarios, class of generated SMs, ability of de-
tecting concurrency, and degree of automate.

Even if the model of the target system is designed, we
will face the problem of validation of the design model.
Since, interactions between services are highly compli-
cated, it is difficult for developers to validate manually
without overlooking design defects. Therefore, manual val-
idations in the design stage often leave errors till the im-
plementation stage. Errors detected in the implementation
stage increase development costs and prolong development
term.

We have proposed the Extended ROOM method[8] to
overcome the above problems, and by using the Extended
ROOM method developers can define design models in the
following steps:

1. Define connection between services by the composite
structure diagram.

2. Define interactions between services by communica-
tion diagrams, CDs for short.

3. Generate SMs from CDs
4. Define guards and actions in generated SMs.
5. Simulate these SMs by the simulator against test

cases, and refine these models.

We think that writing CDs and composite structure dia-
grams may be much easier than writing SMs, and generat-
ing SMs from CDs supports developers to design systems
based on SOA.

In this paper, we discuss the step 3 in the above proce-
dure. Our method makes developers possible to generate
SM models from CDs semi-automatically. However, due
to the limitation of page numbers, formal description of
our method is omitted in this paper. Outline of this paper is
as follows: In Sect. 2, we show the construction method of
SMs by using Petri nets. In Sect. 3, we remark conclusion
of this paper.

2. Constructing State Machine Model

2.1. Outline

At the beginning, we assume that composite structure di-
agrams and CDs for the target system have already written.

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 588 -

 MPN Model

service1

service2

 MPN Model

Merged MPN Model

service1

Merged MPN Model

service2

Extended ROOM Model

service1
service2

service3

a

b

State Machine Model

Communication Diagram

(service1)

Message Relation Table
1.define message

 relation tables

2.make message Petri nets

3. merge message Petri nets

5. convert to state machine

 Reachability Graph

4. construct reachability graph

Figure 1: Outline to construct state machine models.

service1 service2 service3

service4

service5
CD1

1.a() 2.b()3.c()

5.d()

4.e()

6.f()

service1 service2 service3

service4

service5
CD2

1.a() 2.b()

3.d()4.f()

service1 service2 service3

service4

service5
CD3

1.a() 2.b()

service1 service2 service3

service4

service5
CD4

1.a() 2.i()

3.h()

Figure 2: CDs for the example system.

This section describes how SMs are constructed from CDs
by our proposed method.

Figure1 shows the outline to construct SMs from given
CDs. Our construction method consists of five steps: (1)
defining message relation tables step, (2) making message
Petri nets step, (3) merging message Petri nets step, (4) con-
structing reachability graphs step, and (5) converting into
SMs step.

2.2. Example System

We use the same example through this paper. The exam-
ple system is composed of five services, and their interac-
tion cases are described by four CDs shown in Fig. 2.

A CD shows the interaction among the services. The
rectangular node represents a service, and lines between
nodes show communication paths. Messages between ser-
vices are shown by labeled arrows near connector lines.
There exist two message types: synchronous and asyn-
chronous messages. The synchronous, resp. the asyn-
chronous, message is indicated by an arrow with a filled
solid arrowhead, resp. a stick arrowhead. The return mes-
sage for synchronous messages is not written in CDs nor-

a b c d e f re_a

a

b

c

d

e

f

re_a

Figure 3: The MRT for CD1 in Fig. 2.

mally. The number around the message is called the se-
quence number.

2.3. Message Relation Tables

Order relations between messages in CDs have to be
defined precisely to generate SMs. Using the sequence
number is one of methods to define the order relations.
We, however, think that the sequence number does not
have enough potential to describe order relations precisely.
One of the major reasons is that it is difficult to express
concurrent relations among messages, especially for asyn-
chronous messages. Another reason is that the return mes-
sage for a synchronous message does not appear in CDs.

To resolve this problem, we introduce a table to express
ordering relations among messages, called the message re-
lation table(MRT). Fig.3 shows an example of the MRT.
This MRT express ordering relations among messages of
CD1 in Fig.2. The MRT shows that the message a is a pre-
decessor of the message b, for example, and re a is the
return message of the synchronous message a.

2.4. Message Petri Nets

Once CDs and their MRTs are defined, we are ready to
generate SM models. For the effective construction, we use
a kind of Petri nets[9] as an internal modeling language.
The Petri nets are called the message Petri net, MPNs for
short, and it is a labeled Petri net such that each transition
has a label to a message.

A MPN is constructed from CDs and MRTs, and then
the MRT is simplified by using several rules that merges
nodes.

The initial MPN can be directly made from CDs and
MRTs. Fig. 4 shows MPNs made from CDs in Fig. 2,
where MRT of CD1 is shown in Fig. 3, and for other CDs
we assume that the sequence numbers defines total order
among messages.

Since the initial MPN contains redundant transitions and
places, we reduce the MPN by using merging rules. Fig. 5
shows intuitive description of the merging rules, and Fig. 6
shows the merged MPN by applying the merging rules to
the MPN in Fig. 4.

- 589 -

a

b

c d

e f

re_a

d

f

a

b

re_a

a

i

h

CD1 CD2 CD4

initial margedPN

a

b

re_a

CD3

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

Figure 4: MPNs for service2 constructed from CDs in
Fig. 2.

b

d

f

b

d

f

pnewin

pnewout

tnew

mergeInOutSameTr

aa

b

a

b

d

pnewin

mergeInSameTr

re_a

CD3

f

re_a

CD2

pnewoutpnewout

mergeOutSameTr

a

b re_a

e f

t5 t10

t2 t9 t14 t7 t12 t15

CD3CD2CD1CD2CD1 CD1

Figure 5: Rules for merging MPNs.

2.5. Constructing Reachability Graphs

At this step, we construct the reachability graph of the
MPN so as to generate SM model of the system. Fig. 7
shows the reachability graph constructed from the MPN
shown in Fig.6. Each label in a node shows marked places,
namely a marking, and each label outside of a node is the
node name. Label of an edge shows a message. In the
reachability graph, there may still exist redundant struc-
tures. For example see node n1 in Fig. 7, there exist two
outgoing edges with the same label of message a. Before
converting a reachability graph into a state machine, we
simplify the reachability graph by using a rule.

The simplified reachability graph from Fig.7 is shown
in Fig.8. In the figure a label in a node indicates the node
name of the original reachability graph.

2.6. Converting to State Machine Models

Finally, we can get a SM model for each service by using
a conversion rule from the reachability graph to the SM.
Fig. 9 shows the resulting SM model.

a

b

c d

e f

re_a

b

re_a

a

i

h
b

re_a

p1

p2

p3

p6

p4

p5

p7

p8
p9

p10 p11

p12

p13

Figure 6: Merged MPN for the MPN in Fig. 4

p1

p2

p4

p7

p11

p12

p3,p4

p3,p7p4,p6

p6,p7p4,p10 p7,p11

p7,p10 p6,p11

p10,p11

p8

p5

p9

p13

a a

b

b

b

c d

d c fe

d e f c

ef

re_a

d

f

re_a

re_a

h

i

n1

n2 n3

n4

n5

n6

n7 n8

n9 n10

n11
n12

n13

n14

n15 n16
n17

n18

n19

Figure 7: Reachability graph of the MPN in Fig. 6.

2.7. Discussions

Let us discuss the derived SM model. From the CDs in
Fig. 2, the following 9 message sequences can be derived.

1. a,b,c,d,e,f,re a
2. a,b,c,e,d,f,re a
3. a,b,c,d,f,e,re a
4. a,b,d,f,c,e,re a
5. a,b,d,c,e,f,re a
6. a,b,d,c,f,e,re a
7. a,b,d,f,re a
8. a,b,re a
9. a,h,i

The SM shown in Fig.9 can execute all of these mes-
sage sequences. However, another sequence can be exe-
cuted in this SM, for example a,b,c,d,re a. The cause

- 590 -

n2,n3

n6,n7,n8

n10,n11

n14,n17

a

b

c d

d c fe

d e f c

ef

re_a

re_a

h

i

n1

n4

n5

n9

n12 n13

n15 n16

n18

n19

re_a

Figure 8: Simplified reachability graph for Fig. 7.

a()/
/b()

c()/ d()/

/e() /f()

/re_a()

/re_a()

/h()

i()/

n1

n6,n7,n8

n9

n12

n10,n11

n14,n17

n18

n19

n5

n2,n3

n4

Figure 9: Generated SM model from the reachability graph
in Fig. 8.

of these extra sequences is the transition from a compos-
ite state having two concurrent regions. When the SM is
generated, several transitions from child states in the com-
posite state to states in outside of the composite state are
merged into these transitions. These extra sequences may
be undesirable behavior from the point of service seman-
tics. We think whether those extra message sequences are
valid or not can be checked by developers.

After generation of SMs for services, developers need
to define following additional elements in SMs to simulate
behaviors of the system.

Guard Condition Transitions from a decision and transi-
tions from a composite state need guard to determine
the transition to be executed. The SM is able to be-
come deterministic with guard expression.

Actions To simulate system behavior in detail, developer
need to define actions to define detailed semantics of

services.

3. Conclusions

In this paper, we have improved extended ROOM
method in following two points. At first, we proposed
the MRT to resolve ambiguity of message orders between
asynchronous and synchronous messages in CDs. Sec-
ondly, we proposed an improved generation method of SM
models from CDs and MRTs with by using the message
Petri nets. By these two proposals, we succeed in generat-
ing SM models which are able to simulate service behav-
iors.

Our future work includes generating test cases and test-
ing scripts for the SM models in order to effective valida-
tion of systems based on SOA.

References

[1] E. Thomas, Service-Oriented Architecture, PREN-
TICE HALL, 2004.

[2] B. Selic, G. Gullekson, and P.T. Ward, REAL-TIME
OBJECT-ORIENTED MODELING, John Wiley &
Sons, Inc., 1994.

[3] B. Selic and J. Rumbaugh, “Using UML for
Modeling Complex Real-Time Systems,” 1998.
http://www.ibm.com/developerworks/rational/library/139.html.

[4] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual, Second Ed.,
Addison-Wesley, 2004.

[5] W. Jon and S. Johann, “Generating Statechart Designs
From Scenarios,” 22nd International Conference on
Software Engineering, pp.314–323, 2000.

[6] S. Leue, L. Mehrmann, and M. Rezai, “Synthesizing
ROOM Models from Message Seauence Chart Specifi-
cations,” Technical report, Dept. of Elictrical and Com-
puter Engineering, University of Waterloo, 1998.

[7] H. Liang, J. Dingel, and Z. Diskin, “A Compara-
tive Survey of Scenario-based to State-based Model
Synthesis Approaches,” 5th International Workshop on
Scenarios and State Machines: Models, Algorithms
and Tools (SCESM’06), pp.5–11, 2006.

[8] H. Kurahata, T. Fujii, T. Miyamoto, and S. Kuma-
gai, “A UML Simulator for SOA Based on Agent
Net Model,” IPSJ SIG Technical Reports, Vol.2007,
NO.97, 2007. (in japanese).

[9] T. Murata, “Petri Nets: Properties, Analysis and Appli-
cations,” Proc. of The IEEE, Vol. 77, No. 4, 1989.

- 591 -

	Navigation page
	Session at a glance
	Technical program

