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Abstract– We have devised algorithms for navigating a 

mobile agent whose mission is to find the location where 

the physical status of the environment takes the maximum 

using sensor data from wireless sensor systems sparsely 

deployed in the environment. Our algorithms allow 

determining the goal location without gradients in the 

sensor field. Their performance is assessed in terms of the 

probability and time for finding the goal by numerical 

experiments. 

 

1. Introduction 

Sensor networks are becoming important information 

infrastructures of the society in the post PC era. This 

technology enables us staying at home or in the office to 

monitor the physical status of the environment where 

wireless sensor systems are deployed and form a network 

for communications [1]-[5]. Sensor data are transmitted 

from one sensor node to another in a multipoint relaying 

manner toward a host computer as a sink node in the 

network. However, sensor networks have a critical 

bottleneck in that they consume much energy to establish 

and maintain communication routes between sensor nodes. 

This often prohibits real-world applications of sensor 

networks, because the electric power assigned to each 

sensor node is limited. 

Motivated by recent epoch-making findings in complex 

networks science [6], we have proposed a hierarchical 

sensor network model toward fixing the problem of 

energy consumption due to frequent re-establishments of 

communication routes [7]. In our model, wireless sensors 

of multiple classes each of which is differentiated on the 

basis of hardware specifications such as power source and 

communication capability form a network with a 

particular topological structure reminiscent of scale-free 

networks. The resulting network has robustness to 

external random attacks in that faults of sensor nodes are 

the most likely to occur in terminal nodes having a single 

edge, achieving saving energy for re-establishing 

communication routes. 

Although our hierarchical model is worth being further 

investigated, we have also studied an alternative approach 

to fixing the energy-consumption problem. In this 

approach, we use a mobile agent, for instance, a small 

flying object with a micro computer, a global positioning 

system and a wireless communication system, which 

aggregates sensor data including the location of each 

sensor node and brings them back to the sink node. 

Instead, the sensor nodes do not form a network, sending 

their data to the mobile agent coming closer to them. 

Mobile agent methods for sensor systems have been 

investigated in previous literature [3, 8, 9]. In [8] and [9], 

for instance, Dijkstra’s algorithm [10] was applied to 

determining the optimal paths for a mobile agent to 

aggregate sensor data and bring them back to the sink, and 

for mobile sensor nodes that can move to new locations to 

improve the coverage of the sensor network, respectively. 

In this paper, we show algorithms for navigating a 

mobile agent whose mission is to find using sensor data 

the location where the physical status of the environment 

takes the maximum as a sign of anomaly that indicates a 

disastrous event happening in the environment. Our 

algorithms aim at achieving the minimal time for finding 

the target location, because the amount of energy that the 

agent can use is limited. In this sense, the purpose of this 

study is different from those of the previous studies [8, 9], 

rather is closer to that of the previous work by Vergassola 

et al [11]. They investigated a mathematical model 

concerning how animals such as moths can search their 

partners with sporadically sensed odours emanated from 

the partners and carried by an erratic flow of air. In fact, 

our mobile agent tracks sporadic data from nearby sensor 

nodes to the target location, but it cannot rely on gradients 

in the sensor field, since the data available at a time can 

provide gradients of zero.  

This paper is organized as follows. In Section 2, we 

describe our search algorithms without gradients. In 

Section 3, the performance of the algorithms is assessed 

with numerical experiments. Discussion and conclusion 

are given in Section 4. 

 

2. Algorithms 

The sensor field is defined as the environment mapped 

into a Euclidean space in which sensed information is put 

on each location of the sensor nodes randomly deployed 

in the environment. The sensor information represents the 

physical status within the detectable area of each sensor 

node. The detectable area is assumed to be a circle sd
 
in 

radius centered at each sensor node. The union of all 
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detectable areas should cover the whole environment. 

However, there may be cases in which uncovered areas 

are interspersed in the environment. In our model, an 

uncovered area is termed a hole. 

The mobile agent aggregates sensor data from the 

sensor nodes within its communicable distance ad . The 

mean over the acquired data is supposed to represent the 

status of the environment at the location of the agent. 

Under these assumptions, we design two different 

algorithms, as shown in the following subsections. 

 

2.1. Moving Starting Location Method 

An algorithm referred to as the moving starting location 

(MS) algorithm is constructed as follows (Fig.1). 

(1) Set an initial starting location. At this location, the 

mobile agent aggregates sensor data to estimate the 

mean. 

(2) Move the mobile agent by a distance of 1d
 
in 

sequence from the starting location to search 

locations in the north, northwest, west, southwest, 

south, southeast, east and northeast. At each search 

location, aggregate sensor data and estimate its status. 

(3) Compare the status of the starting location to those of 

the search locations and find the best search location 

whose status takes the maximum. If there is no 

maximum, go to step (6). Otherwise, go to step (4). 

(4) Move the agent randomly to a location on the quarter 

arc in radius 2d
 
centered at the starting location.  

(5) Set the current location to a new starting location and 

do steps (1) to (3). If the current maximum is greater 

than the previous maximum, double 2d . Otherwise, 

reduce 2d  by half. Go to step (4). 

(6) Move the agent randomly to a location on the full 

circle in radius 2d
 
centered at the starting location. 

Set the location to be a new starting location and do 

steps (1) to (3). 

(7) The MS algorithm is terminated when 2d
 
becomes 

less that a critical distance cd . 

The final location is taken as the goal. As a variant of 

the MS algorithm, we may make the transition from the 

starting location to the best search location in step (4) a 

stochastic process. This can be performed with simulated 

annealing [12]. In this algorithm, the transition probability 

is defined as ]/)'(exp[ Teep 
 
if 'ee   and as 1p

otherwise, where the status at a starting point and a search 

location are e
 
and 'e , respectively, and T

 
is a 

temperature parameter. 

 

Figure 1: Schematic diagram of the MS model. The initial 

starting location is indicated by a white dot, its search 

locations by black dots and the best location by a red dot. 

The subsequent starting location is marked by a blue dot. 

2.2. Contracting Search-Area Method 

Another algorithm referred to as the contracting search-

area (CA) algorithm is constructed as follows (Fig.2). 

(1) Set an initial starting location, where sensor data are

 not to be aggregated by the mobile agent. 

(2) Move the mobile agent by a large distance of 3d
 
in 

sequence from the starting location to search 

locations in the north, northwest, west, southwest, 

south, southeast, east and northeast. At each search 

location, aggregate sensor data and estimate its status. 

(3) Compare the status of the search locations and find 

the best location whose status takes the maximum. 

(4) Set the best location to a new starting location and 

reduce 3d by half.  Do steps (2) to (3).  

(5) Iterate steps (2) to (4) by 1I  
times. Then the 

algorithm is terminated. 

The final location is taken as the goal. To circumvent 

the trapping of the agent into a local maximum, the CA 

algorithm may be iterated by 2I
 
times.

. 

  

 

Figure 2: Schematic diagram of the CA model. The initial 

starting location is indicated by a white dot, its search 

locations by black dots and the best location by a red dot. 

The subsequent search locations are marked by blue dots. 

 

3. Numerical Experiments 

Numerical experiments were conducted to assess the 

performance of the algorithms in terms of the probability 

and dimensionless time for a mobile agent to reach the 

goal location whose status takes the global maximum. We 

first defined a dimensionless square area in which the 

physical status of the environment was assigned on each 

grid as numbers and N
 
sensor nodes were randomly 

deployed. The size of the area was given as XX   with 

48X , 93, 138 and 183. The detectable area of each 

sensor node was set to 2.1sd . The (dimensionless) 

velocity of the mobile agent was assumed to be 1.2 in both 

x and y directions. 

In the following, we show results only for 183X , 

because other settings of X  provided essentially similar 

results. The parameter settings were 2.1ad , 21 d
 

and 4/10/ 21 Xdd 
 
( 10/1ddc  and initially 

12 dd  ) in the MS algorithm, and 4/3 Xd 
 
in the CA 

algorithm. 

3.1. Optimal Number of Sensor Nodes 

To determine an appropriate number of sensor nodes, the 

following experiments were conducted. We assigned a 

single extremum, i.e., a global maximum to the area, and 

conducted 200 trials of searching the maximum using the 
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MS without simulated annealing and the CA algorithm 

with 41 I
 
to 6 and 02 I

 
as a function of the number 

of sensors increasing by 50. The density of sensor nodes 

per unit area increased from 0 to 1.5. Typical trajectories 

of the agent during searching are shown in Fig.3, where 

the global maximum is near the left-bottom corner. 

 Although the CA algorithm required more sensor nodes 

than the MA algorithm, a density of sensor nodes per unit 

area of 1.2 was found to be sufficient for the agent to 

almost surely reach the goal regardless of the search 

algorithms. 

 

     
Figure 3: Trajectories of a mobile agent ( 183X ). Left 

panel: MS; Right panel: CA. Color spectrum represents 

the magnitude of the physical status of the environment in 

increasing order from blue to red. 

 

3.2. Probability and Time for Reaching the Goal 

We next conducted 200 trials of searching to assess the 

probability and time for the agent to reach the goal. In 

these experiments, the number of sensor nodes was set to 

a node density of 1.2. The performance of the algorithms 

was assessed for three cases of extrema assigned to the 

area: a single extremum and multiple extrema. As a 

benchmark, we used the entire search over the whole area 

to aggregate all sensor data. Our algorithms should 

achieve reaching the goal in a shorter time with a 

practically high probability than the benchmark. 

Otherwise, they are not useful. 

   Figures 4 to 7 show typical trajectories of the agent 

during searching. The performance of the algorithms is 

summarized in Tables 1 to 3. 

 

     
Figure 4: Trajectories of a mobile agent ( 183X ). Left 

panel: MS; Right panel: MS with simulated annealing. 

The global maximum is near the left-top corner. 

 

     
Figure 5: Trajectories of a mobile agent ( 183X ). Left 

panel: CA with 61 I
 
and 02 I ; Right panel: CA with 

61 I
 
and 22 I . The global maximum is near the left-

top corner. 

 

     
Figure 6: Trajectories of a mobile agent ( 183X ). Left 

panel: MS; Right panel: MS with simulated annealing. 

The global maximum is in the center. 

 

     
Figure 7: Trajectories of a mobile agent ( 183X ). Left 

panel: CA with 61 I
 
and 02 I ; Right panel: CA with 

61 I
 
and 22 I . The global maximum is in the center. 

 

Table 1: Average performance of the MS and CA 

algorithms over 200 trials for a single maximum in the 

area (Fig.3). CA(0) expresses 02 I in the CA algorithm. 

 48×48 93×93 138×138 183×183

Benchmark 1 1 1 1

MS 1 1 1 0.9250

CA(0) 1 0.9950 0.9100 0.9750

Benchmark 525.33 2013.33 4444.67 7826.00

MS 215.99 371.58 450.01 585.13

CA(0) 117.02 231.05 345.88 458.19

Probability

Time

 

 

Table 2: Average performance of the MS and CA( 2I ) 

algorithms over 200 trials for multiple extrema in the area 

(Figs.4 and 5). MS(SA) stands for MS associated with 

simulated annealing. 
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 48×48 93×93 138×138 183×183

Bechmark 1 1 1 1

MS 0.4700 0.3800 0.3750 0.2650

MS(SA) 0.8200 0.8000 0.8300 0.7800

CA(0) 1 1 0.9850 1

CA(1) 1 1 1 1

Benchmark 525.33 2013.33 4444.67 7826.00

MS 142.18 232.44 304.38 328.20

MS(SA) 501.96 1364.25 4062.97 8314.16

CA(0) 117.79 230.78 346.13 459.71

CA(1) 194.38 386.25 575.09 769.42

Time

Probability

 

 

Table 3: Average performance of the MS and CA( 2I ) 

algorithms over 200 trials for multiple extrema in the area 

(Figs.6 and 7). MS(SA) stands for MS associated with 

simulated annealing. 

 48×48 93×93 138×138 183×183

Benchmark 1 1 1 1

MS 0.2900 0.2850 0.3000 0.2600

MS(SA) 0.4650 0.4600 0.7600 0.6900

CA(0) 0.0050 0 0 0

CA(1) 0.7350 0.9900 0.8750 0.9700

Benchmark 525.33 2013.33 4444.67 7826.00

MS 159.72 294.72 437.28 544.96

MS(SA) 558.11 1630.64 4453.05 10180.75

CA(0) 122.50 none none none

CA(1) 195.08 387.84 578.67 768.97

Time

Probability

 

 

4. Discussion and Conclusion 

The numerical results suggest that a node density of 1.2 

per unit (dimensionless) area is sufficient to circumvent 

the influence of holes, which should be improved with 

increasing detectable area of a sensor node.  The MS 

algorithm seems to need less sensor nodes than the CA 

algorithm. A mobile agent subject to the MA method tends 

to read more sensor nodes than the CA method because of 

the initial increment of 2d  followed by its reduction 

toward the goal location. This makes the search process 

less sensitive to holes in that there are more opportunities 

for the agent to complement the deficiencies of sensor 

data.  

When the physical status of the environment has a 

single maximum, the MS method can find the goal 

location more surely than the CA method, despite taking a 

longer time, which may be expected from the fact that the 

agent subject to the MS method is likely to read more 

sensor nodes. However, when there are multiple local 

extrema in the environment, the MS method is more likely 

to incur the trapping of a mobile agent into local maxima. 

Simulated annealing does not improve the MS method, as 

shown in Tables 2 and 3. In fact, simulated annealing 

brings an outrageous increase in time to find the goal. It 

takes longer time than the benchmark. This could be due 

to idiosyncrasy in the distribution of the sensor data. For 

the present, it is unclear why simulated annealing did not 

work in our experiments. 

In actual applications, there are often cases where the 

physical status of the environment has multiple extrema. 

Accordingly, the CA method with 12 I  is better than the 

CS method for operating a mobile agent. It achieves a 

practically high probability and shorter time, as small by 

1/10 as the time required by the benchmark method. 

In conclusion, we have devised two algorithms without 

gradients for navigating a mobile agent toward the goal 

location whose physical status takes the maximum. The 

CA algorithm seems to be better for practical use. Other 

methods without gradients, for instance, the association of 

Bayesian inference with the MS and CA methods or using 

a class of zigzag movement of the agent, may be possible. 

These will be deferred to future studies. 
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