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Abstract—In this talk, we propose numerical method
for investigating dynamics of discrete breathers (DBs) in
carbon nanotube (CNT) by molecular dynamics (MD)
based simulations. Method for Numerical precise periodic
solutions of DBs are derived in various geometrical con-
figurations of CNTs such as zig-zag CNTs and armchair
CNTs. Linear stability of DB is also investigated numeri-
cally.

1. Introduction

Recently, discrete breathers (DBs) or intrinsic local-
ized modes (ILMs)[1] have attracted great interests in the
field of nonlinear physics, material science and mechanical
engineering[2, 3]. DB is a time-periodic solution which has
localized structure. Discreteness of the system and nonlin-
earity between elements in the system support such a struc-
ture, since nonlinearity supports the vibration out of dis-
persion band which is limited in finite ranges of frequency
due to the discreteness of the system. It has been known
that DB can be exited in a wide range of theoretical lattice
model such as Fermi-Pasta-Ulam (FPU) β lattice, discrete
nonlinear Klein-Gordon (NKG) lattice and discrete nonlin-
ear Schrödinger system. In these systems, existence, struc-
ture and stability of DB have been investigated. It should
be noted that existence of DB is not require special prop-
erty except nonlinearity and discreteness. Therefore DB
can be excited whether considering system is integralable
or not. This means that DB can be excited in a wide range
of physical systems. Recently it has been reported that DB
can be excited in various physical systems such as micro-
[4] and macro-[5] mechanical systems, magnet-mechanical
systems[6] and optical systems[7].

One of the promising physical systems in which exci-
tation of DB is expected is crystal structure. In a micro-
scopic view, crystal structure is just a discrete structure of
atoms. Usually, interaction between atoms is considered
as linear interaction. However, in the case of large defor-
mation of materials and dynamics of atoms in large ampli-
tude, interaction between atoms can be described as non-
linear function. Therefore in these situation, nonlinearity
and discreteness become dominant in dynamics of the sys-
tem. Discreteness of crystals appears in dispersion bands
in phonon dispersion relation. Nonlinearity of crystal leads
to excitation of vibration of higher or lower frequency of
dispersion band. Therefore DB can be excited as atomic

vibration in a region of a few atomic length.
There have been a lot of reports on DB in crystals. In

early stage, one-dimensional lattice with a realistic model
potential is considered. Kiselev has been investigated DB
in a one-dimensional lattice with Born-Mayer-Coulomb
potentials[8]. Cuevas has been reported interaction of
DB with defects in a one-dimensional lattice with Morse
potentials[9]. DBs in more complex crystals, such as
two dimensional hexagonal systems with Lennard-Jones
potential[10], and three dimensional bcc metals with EAM
potential[11] has been also investigated by using molecular
dynamic (MD) method.

Carbon structure such as carbon nanowire, graphene and
carbon nanotube (CNT) has been attracted significant in-
terests since they have special characteristics in mechan-
ics, electrics and vibrations other than previous carbon
compounds such as diamonds and graphite. It is also ex-
pected that DB can be excited in these carbon structures.
Yamayose has been reported that DB can be excited in
graphene from modulational instability[12]. DB is excited
in three directions which can be corresponds to direction of
bond of hexagonal lattice. Kinoshita has been reported that
DB can be excited in CNT by the same way of graphene[?].
Lifetime of DB in CNTs depends on its chirality, since cur-
vature along to circumference affect on stability of DBs.
Linear stability of DB in graphene has been investigated
numerically by Doi[14]. In there report, stability depends
on strain enforced in graphene and unstable perturbation
mode sometimes forms shear motion against the motion of
DB. This result imply that DB in graphene becomes trig-
ger of the deformation or rearrangement of structure of
atoms. Shimada have performed direct simulation of dy-
namics of DB in strained CNT[15]. In their simulations,
DB in the strained CNT becomes a trigger of Stone-Wales
transformation, which transforms four hexagons into two
pentagons and two heptagons.

In this study, we investigate the dynamics of DB in CNT
from the view point of linear stability and direct simulation
by MD method. MD method is a powerful tools for in-
vestigating deformation of materials. MD is performed by
direct integration of equation of motion which is estimated
by the heuristic model potential describing the interaction
between atoms. We couple the MD method with linear sta-
bility analysis based on nonlinear dynamics. At first, we
search localized solution in CNT by a iteration method cou-
pled with MD method. Then we investigate linear stability
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Figure 1: Schematic description of formation of CNT from
graphene.

of DB in CNT. Detailed procedure is described in the fol-
lowing sections.

2. Models

We consider two types of CNT with different structure:
armchair CNT and zigzag CNT. Fig. 1 shows schematic
description of structure of armchair CNT and zigzag CNT.
CNT can be formed by rolling the graphene. Difference of
structure between armchair CNT and zigzag CNT is due to
difference of direction of rolling. As a result of difference
of direction of rolling, armchair CNT has bonds which is
parallel to circumference of CNT. Zigzag CNT, on the other
hand, has bonds which is parallel to the rolling axis.

CNT consists of carbon atoms. We use the heuristic
interaction potential for hydrocarbon atoms proposed by
Brenner. Brenner potential is described as follows:

H =
N∑
i

∑
α

(pαi )2

2M
+

1
2

N∑
i

N∑
j,i

N∑
k,i, j

Φi jk(ri j, r jk, θi jk), (1)

where N is the number of atoms in the system, α is the
coordinates x, y and z, i, j and k are the indices of the
atoms, M is the mass of carbon atom, pαi is the momentum
of i-th atom in α coordinate, Φi jk is interaction potential,

ri j =
√∑

α(qαj − qαi )2 is bond length of between i-th and
j-th atoms, θi jk is the angle between bond i − j and bond
i − k, qαi is the position of i-th atom in α coordinate. The
function Φi jk is determined from the mechanical properties
of hydrocarbon crystal.

CNT is placed in the simulation region such that rolling
axis of CNT is parallel to the z-axis. Periodic boundary
conditions for x-, y- and z-axis is considered. Length of
simulation cell in x- and y-axis is wide enough to effect
from mirroring simulation cell is negligible. In z-axis, CNT
is connected at boundary.

We consider the condition for very low temperature.
Atoms except for DB is excited are at rest. Energy con-
servation in the system is also considered. Therefore, any
heat bath is not connected to the system.

3. Simulation

We investigate the dynamics of atoms in CNT by MD
method. Equations of motions for i-th atom is given as
follows:

q̇αi =
∂H
∂pαi

(2)

ṗαi = −
∂H
∂qαi
. (3)

We integrate these equations of motion numerically. The
integration method is 4-th order symplectic integration
method. As discussed in the above section, we do not con-
sider any heat bath to the system since we consider energy
conservation dynamics. MD method also used in the calcu-
lation of temporal evolution in iteration method and linear
stability analysis.

We also investigate numerically exact solution of DB
in graphene. Consider a state in the phase space X0 =

{qx
1, q

y
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z
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evolution from X0 is described by the equation of motion
(2)-(3). Let V(X) be a vector field defined as follows:

V(X) = AT (X) − X, (4)

whereAt′ is a map defined as follows:

At′X = X(t + t′). (5)

If X0 is on the periodic orbit in period T in the phase space.
The following relation holds,

V(X0) = AT (X0) − X0 = 0. (6)

When we consider a small error δX around X0, we obtain
the difference δX for the Newton-Raphson method by using
Taylor expansion for vector filed,

δX = −(∂A(X0) − I)−1V(X0), (7)

where ∂A(X0) is a tangent map. The tangent map ∂A(X0)
can be calculated numerically by solving the linearized
equation of (2)-(3) with initial conditions which have only
nonzero component. Main periodic orbit which appears in
coefficient in the linearized equation can be estimated from
the numerical results for MD method. Therefore, Newton-
Raphson method for the DB in CNT is constructed by the
following procedure:

1. Calculate the temporal evolution of the orbit in the
phase space from a initial guess X by numerical inte-
gration of equation of motion (2)-(3) by MD method.
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2. Evaluate the vector field (4). If V(X) is small enough.
The initial guess is numerically exact solution of DB.

3. If V(X) is not small enough, we construct a tangent
map ∂A(X) by integrating the linearized equation of
motion on the periodic orbit calculated in procedure
1.

4. Calculate the correct vector (7) and update the initial
guess from X to X + δX.

We also investigate linear stability of the obtained nu-
merically exact solution of DB in CNT. Once numerically
exact solution is obtained, linearized equation of motion
around the solution is obtained,

ξ̇αi =∑
( j,β),(i,α)
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j
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(9)

where ξαi and ηαi are perturbations around qαi and pαi , re-
spectively.

Consider that the numerically exact solution of DB has
period T . Coefficient of Eq.(8)-(9) is T -periodic. There-
fore, Eq.(8)-(9) is rewritten as follows:

Ẏ = CY, (10)
C(t) = C(t + T ), (11)

where Y = {ξx
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is known that equation of motion (10) with T -periodic co-
efficient matrix (11) has temporal evolution with following
linear relation:

Y(t + T ) =M(T )Y(t). (12)

The matrix M(T ) is known as the monodromy matrix. The
monodromy matrix gives information of linear stability of
the periodic solution. By solving eigenvalue problem of
M(T )

M(T )Yn = σnYn, (13)

we obtain the growth rate of the perturbation and the pat-
tern of corresponding perturbation mode Yn. Using the re-
sult of eigenvalue problem, an arbitrary perturbation Y(t)
is decomposed into

Y(t) =
∑

n

an(t)Yn, (14)

where an(t) is amplitude of n-th component of the pertur-
bation. Using (12)-(14), temporal evolution of perturbation
after one period of DB vibration is given as follows:

Y(t + T ) =
∑

n

an(t)σnYn. (15)

Eq.(15) indicates that if |σn| > 1, corresponding perturba-
tion mode grows during vibration. Therefore DB is un-
stable if there exists eigenvalues of the monodromy matrix
with |σn| > 1. The system under consideration is Hamilton
system. In this case, if σn is an eigenvalue, 1/σn is also
eigenvalue. Therefore, the obtained DB is stable only if all
eigenvalues |σn| = 1.

Monodromy matrix can be constructed numerically.
Consider 3N-vectors dn as

d1 = {1, 0, 0, . . . , 0}T

d2 = {0, 1, 0, . . . , 0}T
...

d3N = {0, 0, 0, . . . , 1}T . (16)

Then we calculate temporal evolution during T of Eq.(8)-
(9) from initial conditions (16). The monodromy matrix is
obtained by arranging obtained vectors which describe the
solution of t = T of Eq.(8)-(9).

4. Conclusion

Using the proposed method, we can investigate numer-
ical precise solution of DB in CNT. Adding to this, lin-
ear stability is also investigated using the method which is
coupling method MD and stability theory. Some numerical
results will be discussed in the presentation.

References

[1] A.J. Sievers and S. Takeno, “Intrinsic Localized Modes
in Anharmonic Crystals,” Phys. Rev. Lett., vol. 61,
pp.970–973, 1988.

[2] S. Flach and A.V. Gorbach, “Discrete breathers―Ad-
vances in theory and applications,” Phys. Rep., vol.
467, pp.1–116, 2007.

[3] K. Yoshimura, Y. Doi and M. Kimura, “Localized
Modes in Nonlinear Discrete Systems,” in Progress
in Nanophotonics 3 (M. Ohtsu and T. Yatusi eds.),
Springer, pp.119–166, 2014.

[4] M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D.
A. Czaplewski, and H. G. Craighead, “Observation
of locked intrinsic localized vibrational modes in a
micromechanical oscillator array,” Phys. Rev. Lett.,
vol.90, 044102, 2003.

- 908 -



[5] Y. Watanabe, K. Hamada and N. Sugimoto, “Mo-
bile Intrinsic Localized Modes of a Spatially Periodic
and Articulated Structure,” J. Phys. Soc. Jpn., vol.81,
014002, 2012.

[6] M. Kimura and T. Hikihara, “Capture and release of
traveling intrinsic localized mode in coupled cantilever
array,” Chaos, vol.19, 013138, 2009.

[7] H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R.
Boyd and J. S. Aitchison, “Discrete spatial optical soli-
tons in waveguide arrays,” Phys. Rev. Lett., vol.81,
pp.3383–3386, 1998.

[8] S.A. Kiselev, S.R. Bickham and A.J. Sievers, “Anhar-
monic gap mode in a one-dimensional diatomic lat-
tice with nearest-neighbor Born-Mayer-Coulomb po-
tentials and its interaction with a mass-defect impu-
rity,” Phys. Rev. B, vol.50, pp.9135–9152, 1994.

[9] J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck,
F. M. Russell, “Influence of moving breathers on va-
cancies migration,” Phys Lett A, vol.315, pp.364–371,
2003.

[10] J.L. Marı́n, J.C. Eilbeck and F. M. Russel, “Local-
ized moving breathers in a 2D hexagonal lattice,” Phys.
Lett. A, vol.248, pp.225-229, 1998.

[11] R.T. Murzaev, A.A. Kistanov, V.I. Dubinko, D.A. Ter-
entyev and S.V. Dmitriev, “Moving discrete breathers
in bcc metals V, Fe and W,” Computational Materials
Science, vol.98, pp.88–92, 2015.

[12] Y, Yamayose, Y. Kinoshita, Y, Doi, A. Nakatani, T.
Kitamura, “Excitation of intrinsic localized modes in a
graphene sheet,” EPL, vol.80, 40008, 2007.

[13] T. Kinoshita, Y. Yamayose, Y. Doi, A. Nakatani, T.
Kitamura, “Selective excitations of intrinsic localized
modes of atomic scales in carbon nanotubes,” Phys.
Rev. B, vol.77, 024307, 2008.

[14] Y. Doi and A. Nakatani, “Numerical study on un-
stable perturbation of intrinsic localized modes in
graphene”, Journal of Solid Mechanics and Materials
Engineering, vol.6, pp.71–80, 2012.

[15] T. Shimada, D. Shirasaki and T. Kitamura, “Stone-
wales transformation triggered by intrinsic localized
modes in carbon nanotubes,” Phys. Rev. B, vol.81,
035401, 2010.

- 909 -


	Navigation Page
	Session at a glance

