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Abstract—In battery-driven real-time systems, there is
requirement for adapting both energy consumption and
Quality of Service (QoS) of tasks according to their im-
portance. This paper proposes a power-aware resource al-
location method to resolve a trade-off between the energy
consumption and QoS according to their importance with
guaranteeing the fairness. The proposed method accounts
for energy consumption by devices as well as CPU with
DVS and guarantees the system lifetime requirement. We
formulate the resource allocation problem as a nonlinear
optimization problem and propose a method to find the op-
timal allocation by an iterative method.

1. Introduction

Several wireless sensor networks (WSN) have the life-
time requirements that the lifetime of each battery-driven
sensor node is guaranteed to be longer than a given one.
By saving the energy consumption in each node, the life-
time can extend as long as possible. On the other hand, sav-
ing the energy can force smaller sampling rate to keep the
schedulability. Reduction of the sampling rate negatively
affects on the Quality of Service (QoS) of the result of the
data processing. The importance of saving the energy con-
sumption and guaranteeing the QoS changes occasionally
according to the residual energy, the longness of the life-
time, and so on. Thus, the resource allocation in a node
should consider their importance.

Several researches have been studied to resolve the
trade-off [1, 2]. In [1], a cross-layer energy and QoS adap-
tation framework has been proposed, which coordinates
the resource allocation based on a given trade-off scheme.
However, it does not consider the occasional change of
trade-off scheme by the residual energy, the lifetime re-
quirement, and so on.

In this paper, we propose a resource allocation method to
resolve the trade-off between the energy and the QoS under
the lifetime requirement with considering the occasionally
variant importance. The proposed method adapts the tasks’
frequencies and the CPU speed under the lifetime and fair-

ness constraints. Though it is suitable for sensor nodes, it
can be applied to general soft real-time systems with DVS-
enabled CPUs and other devices such as wireless commu-
nication devices.

The rest of this paper is organized as follows. Section
2 gives the real-time system model and describes the re-
source allocation architecture. Section 3 formulates the re-
source allocation problem and discuss the optimality of it.
A simulation result is shown in Section 4. Finally, Section
5 concludes this paper.

2. Resource allocation for the trade-off management

2.1. System model

Consider an ideal CPU with the DVS capability. Its
available CPU speeds are denoted by {s1, s2, . . . , sm}, where
s1 < s2 < · · · < sm. The power consumption for s is given
by Ks3, where K > 0 is known.

The task set {τ1, . . . , τn} is independent and pe-
riodic. Each task τi is represented as a 6-tuple
(xmin

i , x
max
i , c

CPU
i , cdev

i , e
dev
i , ϕi). xmin

i and xmax
i are the mini-

mum and maximum task frequency, respectively. The word
“frequency” means (1/(period)) in this paper. The execu-
tion of a job of τi is divided into the execution on the CPU
and that on the other devices. cCPU

i is the CPU cycle de-
mand for the execution on the CPU. cdev

i is the execution
time on the devices. For a CPU speed s j, the execution

time of a job of τi is given by cCPU
i
s j
+ cdev

i . edev
i is the en-

ergy consumption for execution on the devices. The QoS
of τi varies according to its frequency. The resource con-
sumption function ϕi : [0, 1] → [xmin, xmax] represents the
required frequency to execute a job of τi with a value of
QoS.

2.2. Resource allocation architecture

In several battery-driven real-time systems, the impor-
tance of saving the energy consumption and guaranteeing
the QoS may be occasionally variant. Their importance
may be determined according to the residual energy, the
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Figure 1: The resource allocation architecture.

lifetime requirement, and other factors such as the exter-
nal environment. For example, when the residual energy is
enough large, a resource allocation with larger energy con-
sumption is acceptable to guarantee high QoS. On the other
hand, an allocation with reasonably small energy consump-
tion and a reasonably high QoS is desirable if the residual
energy of the device is moderate. If the required lifetime
is enough long, saving the energy is more important than
guaranteeing the QoS. For another example in WSNs, the
sensor data implying an emergency enhances importance
of guaranteeing the QoS. Thus, we introduce a resource al-
location to resolve the trade-off between saving the energy
consumption and guaranteeing the QoS according to their
current importance.

Shown in Fig. 1 is the resource allocation architecture
for the energy and QoS trade-off management, which con-
sists of the importance policy decider, static allocator, dy-
namic allocator, and system monitor. The input parameters
to the importance policy decider are the residual energy E,
lifetime requirement L, current resource consumption, and
other factors which affect on the importance. The decider
determines the relative importance parameter w of saving
the energy compared with guaranteeing the QoS according
to these parameters. For example, it produces a small value
of w for the sufficiently large residual energy while it does
a large value of w for the small residual energy. w is sent
to the static allocator. According to w, the static allocator
calculates each task’s optimal frequency x∗i and the optimal
CPU speed s∗ to resolve the trade-off between the energy
consumption and QoS under the lifetime requirement and
the energy limitation. The calculation is performed based
on w, L, E, and the input tasks’ and CPU’s parameters.
Each task releases its jobs according to the adapted fre-
quency x∗i . The dynamic allocator sets the CPU speed to
s∗ and schedules the released jobs with a scheduling algo-
rithm such as Earliest Deadline First or Rate Monotonic[3].
In execution of a released job, the CPU cycle demand and
achieved QoS dynamically change. The dynamic alloca-
tor performs the resource reclaiming and adapts the pe-
riods and the CPU speed dynamically. This architecture

enables to resolve the trade-off between saving the energy
consumption and guaranteeing the QoS based on their oc-
casionally variant importance.

In this paper, we focus on the static allocator in detail.
Section 3 describes what resource allocation problem is
considered and how the optimal allocation is determined
in the static allocator.

3. Static allocator

3.1. Problem formulation

The static resource allocator solves a problem to find the
optimal static allocation to resolve the trade-off. We con-
sider the resource allocation problem as Problem 1.

Problem 1 w ∈ [0, 1], E, L, U, K, {s1, . . . , sm}, T , xmin
i ,

xmax
i and ϕi are given. Find the optimal values of the

frequencies xi (i = 1, 2, . . . , n) and the CPU speed s for
Eqs. (1)–(8):

max w
E− T

∑n
i=1 xi(KcCPU

i s2+ edev
i )

E − E
+ (1− w)Q (1)

s.t. E = T
n∑

i=1

xmax
i (KcCPU

i s2
m + edev

i ) (2)

E = T
n∑

i=1

xmin
i (KcCPU

i s2
1 + edev

i ) (3)

xi = ϕi(Q), i = 1, . . . , n (4)
n∑

i=1

xi

cCPU
i

s
+ cdev

i

 ≤ U (5)

n∑
i=1

Lxi

(
KcCPU

i s2 + edev
i

)
≤ E (6)

xmin
i ≤ xi ≤ xmax

i , i = 1, . . . , n (7)
s ∈ {s1, s2, . . . , sm} (8)

Equation (1) represents the trade-off between the energy
consumption and the fair QoS based on the weight param-
eter w. Its second term is the achieved QoS Q while the
first is the normalized total energy consumption in the time
range T . The energy is normalized in the range of [E, E],
which are given by Eqs. (2) and (3). In this resource allo-
cation, w and (1 − w) represent the relative importance of
the energy consumption and the QoS, respectively. As w
is larger, the optimal energy consumption decreases while
the achieved fair QoS is lower. On the other hand, smaller
w produces larger energy consumption and higher QoS.
Equation (4) means that all tasks are executed with the
same QoS, which implies the fairness. The total CPU uti-
lization constraint is given by Eq. (5). Equation (6) repre-
sents the lifetime requirement, which means that the total
energy consumption until the required lifetime L is smaller
than the residual energy E.
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3.2. Problem analysis

This subsection discusses how the optimal solution of
Eqs. (1)–(8) is obtained. We denote a feasible solution
(x1, . . . , xn, s) as (Q, s) since each xi is uniquely determined
for Q from xi = ϕi(Q).

We assume that each ϕi is strictly convex and monoton-
ically increasing. This assumption has been introduced in
several resource allocation problems [4, 5]. A task to track
a point in a video has such a resource consumption function
for example.

Equation (1) is equivalent to Eq. (9) from Eq. (4):

min W(Q, s) :=
wT

∑n
i=1 ϕi(Q)

(
KcCPU

i s2 + edev
i

)
E − E

−(1−w)Q.

(9)
Replacing Eq. (8) by Eq. (10), the problem is trans-

formed into the relaxation problem Eqs. (2)–(6), (9), and
(10). We firstly discuss the optimal solution (Q∗∗, s∗∗) of it.

s1 ≤ s ≤ sm. (10)

From Eqs. (4)–(6), it is derived that s of any feasible solu-
tion (Q, s) is bounded by the functions f (Q) and g(Q):

s ≥ f (Q) := max
( ∑n

i=1 ϕi(Q)cCPU
i

U−∑n
i=1 ϕi(Q)cdev

i
, s1

)
, (11)

s ≤ g(Q) := min
([

E−T
∑n

i=1 ϕi(Q)edev
i

T K
∑n

i=1 ϕi(Q)cCPU
i

] 1
2
, sm

)
. (12)

As derived from Eqs. (11) and (12), the feasible region of
Q is Q ∈ [0,min(1,Q⋆)], where f (Q⋆) = g(Q⋆). Note
that f −1(s) and g−1(s) exist on the domains s ∈ (s1, sm] and
s ∈ [s1, sm), respectively, because both of the first terms in
f (Q) and g(Q) are monotonic.

The following two propositions hold:

Proposition 1 The optimal solution (Q∗∗, s∗∗) of Eqs. (2)–
(6), (9), and (10) satisfies s∗∗ = f (Q∗∗).

proof Assume that (Q∗∗, s∗∗) satisfies s∗∗ > f (Q∗∗).
W(Q∗∗, s∗∗) > (Q∗∗, f (Q∗∗)) is derived from Eq. (9). It is
a contradiction. �

Proposition 2 W(Q, f (Q)) is strictly convex in Q ∈
[0,min(1,Q⋆)].

proof W(Q, f (Q)) is given by the following equation:

W(Q, f (Q)) =

wKT

E − E
max


(∑n

i=1 ϕi(Q)cCPU
i

)3(
U −∑n

i=1 ϕi(Q)cdev
i

)2 ,

n∑
i=1

ϕi(Q)cCPU
i s2

1


+

wT

E − E

n∑
i=1

ϕi(Q)edev
i − (1 − w)Q. (13)

Let h(Q) be the function which is given

h(Q) =
∑n

i=1 ϕi(Q)cCPU
i

U −∑n
i=1 ϕi(Q)cdev

i

. (14)

Q

s
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(Q∗, s∗): The optimal solution of Eqs. (1)–(8).
(Q∗∗, s∗∗): The optimal solution of Eqs. (2)–(6), (9), and (10).

Figure 2: The existence region of the optimal solution.

The strict convexity of ϕi guarantees that of h(Q). By ap-
plying

f (Q) = max(h(Q), s1),
ϕi(αQ1 + (1 − α)Q2) < αϕi(Q1) + (1 − α)ϕi(Q2),
h(αQ1 + (1 − α)Q2) < αh(Q1) + (1 − α)h(Q2),

and Q = αQ1 + (1 − α)Q2 (α ∈ [0, 1]) to Eq. (13), we can
derive the strict convexity of W(Q, f (Q)). �

These propositions implies that Eqs. (2)–(6), (9),
and (10) are transformed into the optimization prob-
lem to find the minimum point of W(Q, f (Q)) for Q ∈
[0,min(1,Q⋆)]. Since W(Q, f (Q)) is strictly convex,
(Q∗∗, s∗∗) can be numerically calculated by an iterative
method to find the minimal point of a convex function.

Now we discuss the optimal solution (Q∗, s∗) of Eqs. (1)–
(8). If s∗∗ is one of the available CPU speeds {s1, . . . , sm},
(Q∗, s∗) equals to (Q∗∗, s∗∗). Otherwise, its existence region
is given by Theorem 1. Figure 2 shows an illustration of
Theorem 1.

Theorem 1 Let (Q∗∗, s∗∗) be the optimal solution of
Eqs. (2)–(6), (9), and (10), where s1 < · · · < s j < s∗∗ <
s j+1 < · · · < sm. If the feasible region includes those
with s = s j and s = s j+1, the optimal solution (Q∗, s∗)
of Eqs. (1)–(8) satisfies either of the following conditions:
• s = s j and Q∗ = f −1(s j).
• g−1(s j+1) > f −1(s j), s∗ = s j+1, and Q∗

is the minimum point of W(Q, s j+1) in Q ∈(
f −1(s j), min( f −1(s j+1), g−1(s j+1))

]
.

proof The partial derivative of W(Q, s) with respect to s is
given by the following equation:

∂W(Q, s)
∂s

=
2wTk

E − E

n∑
i=1

ϕi(Q)cCPU
i s > 0. (15)

a. In the case that (Q∗, s∗) , ( f −1(s j), s j) and Q∗ ≤
f −1(s j):
Equation (15) means that W(Q, s) is monotonically increas-
ing with respect to s. Therefore, s∗ is the lower bound cor-
responding to Q∗, that is, s∗ = f (Q∗).
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Since W(Q, f (Q)) is strictly convex from Proposition 2,
it takes its minimum point at Q = Q∗∗ and monotonically
decreases for Q < Q∗∗. Thus, W(Q∗, s∗) = W(Q∗, f (Q∗)) >
W( f −1(s j), s j), which is a contradiction.
b. In the case that f −1(s j+1) < Q∗ ≤ Q⋆:
From the monotonicity of W(Q, s) for s, W(Q∗, s∗) ≥
W(Q∗, f (Q∗)). Since s∗∗ < s j+1 and f −1(·) is monotonically
increasing, Q∗∗ = f −1(s∗∗) < f −1(s j+1) < Q∗.

The strict convexity of W(Q, f (Q)) derives that it takes
the minimum point at Q = Q∗∗ and monotonically in-
creases for Q > Q∗∗. Thus, W( f −1(s j+1), s j+1) <
W(Q∗, f (Q∗)) ≤ W(Q∗, s∗). It is a contradiction.
c. In the case that f −1(s j) < Q∗ ≤ f −1(s j+1) and s∗ , s j+1:
Since f (·) is monotonically increasing, we can obtain s j <
f (Q∗) ≤ s∗, which means s∗ > s j+1.

Since W(Q, s) is monotonically increasing for s,
W(Q∗, s∗) > W(Q∗, s j+1). It is a contradiction.

It is proven from a.–c. �

3.3. Calculation of the optimal solution

From Theorem 1, the optimal solution (Q∗, s∗) of
Eqs. (1)–(8) is obtained according to the following steps.

1. Calculate the optimal solution of (Q∗∗, s∗∗) of
Eqs. (2)–(6), (9), and (10) and find (s j, s j+1) which
satisfies s1 < · · · < s j < s∗∗ < s j+1 < · · · < sm.

2. Calculate W( f −1(s j), s j) by applying Q = f −1(s j) and
s = s j to Eq. (9).

3. Find the minimum point of W(Q, s j+1) for Q ∈(
f −1(s j),min( f −1(s j+1), g−1(s j+1))

]
.

4. (Q∗, s∗) is obtained by the comparison between the re-
sults of Steps 2 and 3.

Steps 1 and 3 can be performed by an iterative numerical
method to find the minimum point of a convex function
since W(Q, f (Q)) is strictly convex. For example, the New-
ton method can be applied. Steps 2 and 3 need calculation
of f −1(s) and g−1(s). They are calculated by solving the
following nonlinear equation forms:

0 = U −
n∑

i=1

ϕi(Q)
cCPU

i

s
+ cdev

i

 , (16)

0 = E − T
n∑

i=1

ϕi(Q)(KcCPU
i s2 + edev

i ). (17)

From the convexity of ϕi, the solutions of these equation
forms are obtained by a numerical method such as the New-
ton method. After Q∗ is obtained, calculating ϕi(Q∗) pro-
vides the value of x∗i . Thus, the optimal task frequency and
CPU speed are calculated by a numerical method to find
the minimum point of convex functions in Steps 1, 2, and
3.

4. Simulation

We conducted a simulation experiment to verify the ef-
fectiveness of our method. Shown in Fig. 3 is the optimal
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Figure 3: The optimal energy vs. QoS

energy consumption and QoS of 5 tasks with respect to w.
The trade-off is provided in w ∈ [0.45, 0.63] because the
optimal solution saturates in w < 0.45 and w > 0.63. Thus,
by replacing w with w′ = (0.63 − 0.45)w + 0.45 in this
case, the trade-off may be provided effectively. The satura-
tion range depends on the tasks’ and CPU’s characteristics.
Thus, adapting w according to their characteristics may be
required in the static allocator.

5. Conclusion

Several battery-driven real-time systems have occasion-
ally variant trade-off requirement between saving the en-
ergy consumption and guaranteeing the QoS. We formu-
lated a static resource allocation problem to resolve the
trade-off under the lifetime, energy, and fairness con-
straints. Also, from the convexity of resource consump-
tion functions, we derived that the optimal allocation can
be obtained by a numerical iterative method to solve some
convex optimization problems.

Future work aims to reduce the convexity assumption of
resource consumption functions.
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