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Abstract—In this paper, we study the oscillating behav-
ior of a class of fuzzy cellular automata as they converge
toward their fixed point. We first prove that they all con-
verge to 1

2 , we then describe their dynamics as values ap-
proach this point of convergence. In all cases the fluctu-
ations around 1

2 obey a Boolean rule. We show that for
some fuzzy rules the oscillations follow precisely the cor-
responding Boolean rule itself, while for others they obey
a different rule. Finally, we characterize the class of ele-
mentary cellular automata that fluctuate according to their
corresponding Boolean rule showing that only those stud-
ied in this paper display this behavior. These results explain
and generalize those of [9].

1. Introduction

Boolean cellular automata (CA) are totally discrete dy-
namical systems: discrete in time, space, and states. They
were introduced by Von Neumann as models of self-
organizing/reproducing behaviors [20] and their applica-
tions range from ecology to theoretical computer science
(e.g., see [3, 14, 21]).

Continuous cellular automata (or Coupled Map Lattices)
are discrete in space and time, but continuous in states.
They were introduced by Kaneko as simple models ex-
hibiting spatio-temporal chaos, and now have applications
in many different areas including fluid dynamics, biology,
chemistry, etc. (e.g., [12, 13]).

Fuzzy cellular automata (FCA) are a particular type
of continuous cellular automata where the local transi-
tion rule is the “fuzzification" of the local rule of a cor-
responding Boolean cellular automaton in disjunctive nor-
mal form1. Introduced in [4, 5] to study the impact that
state-discretization has on the behavior of these systems,
they have been used to investigate the effect of perturba-
tion (e.g. noisy source, computational error, mutation, etc.)
on the evolution of Boolean CA [10]. Recently, they have
been shown to be useful tools for pattern recognition pur-
poses (e.g., see [15, 16]), and good models for generat-
ing images mimicking nature (e.g. [7, 19]). The asymp-
totic dynamics of elementary FCA (i.e., with dimension
and neighbourhood one) have only recently been studied.
In quiescent backgrounds, it has been shown that none of
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1These are not to be confused with a variant of cellular automata, also

called fuzzy cellular automata, where the fuzziness refers to the choice of
a deterministic local rule (e.g., see [1])

them have chaotic dynamics [9, 17, 18]. Circular elemen-
tary FCA have been studied experimentally from random
initial configurations in [8], while some of the interesting
dynamics have recently been proven analytically in [2].

The two models (binary and continuous states) corre-
spond to extreme levels of discretization and the relation-
ship between these levels is an interesting area of investi-
gation. For example, some studies have been done to ap-
proximate CML by CA, i.e., to “discretize" some types of
CML (e.g., [6]). Similarly, one could start from fuzzy CA
and study the change in dynamics while discretizing the
state space, eventually reaching the Boolean model. A dis-
cretization of the state space is created,for example, when
visualizing the space-time diagram of continuous CAs: the
continuous interval is in fact divided in k ranges and each
is assigned a different colour (the level of discreteness is
given by the choice of k). In this regard, a surprising obser-
vation was made in the case of elementary rule 90, whose
Boolean version has received a lot of attention (e.g., see
[11]), where, depending on the level of discretization, the
space-time diagram can at times show a dynamics identi-
cal to the well known complex Boolean behavior, while at
other times a simple convergence. This observation led to
the discovery of a very interesting asymptotic phenomenon
in fuzzy rule 90 [9]: the dynamics of the fluctuations of
fuzzy rule 90 around its convergence point of 1

2 obey the
rule table of the corresponding Boolean rule 90. This opens
an interesting new avenue of investigation: the study and
understanding of the behavior of a convergent rule in prox-
imity to its point of convergence.

Motivated by this phenomenon, we now study the be-
havior of self-averaging rules, a class of elementary rules
which includes rule 90, around their convergence point.
Beside proving that they converge to 1

2 , we also describe
their dynamics in detail as values approach this point of
convergence. We discover that, in all cases, their fluctua-
tions around 1

2 obey a Boolean rule. In the case of rules
60, 90, 105, and 150 the Boolean rule that describes the
fluctuations coincides with the fuzzy rule itself, while for
the other self-averaging rules it is different. Finally, we can
also show that, of all elementary rules, all and only 60, 90,
105, and 150 fluctuate around 1

2 obeying their correspond-
ing Boolean rule table. These results generalize the ones
of [9]. Due to the lack of space some of the proofs are
sketched and some omitted.
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2. Definitions

An elementary circular Boolean cellular automaton con-
sists of a collection of cells arranged in a linear array. Cells
have Boolean values and they synchronously update their
values according to a local rule applied to their neighbour-
hood. A configuration Xt = (. . . , xt

i−1, x
t
i, x

t
i+1, . . .) is

a description of all cell values at a given time t. The
neighbourhood of a cell consists of the cell itself and its
left and right neighbours, thus the local rule has the form:
g : {0, 1}3 → {0, 1}. The local rule g of a Boolean
CA is typically given in tabular form by listing the 8 bi-
nary tuples corresponding to the possible local configu-
rations a cell can detect in its direct neighbourhood, and
mapping each tuple to a Boolean value ri (0 ≤ i ≤ 7):
(000, 001, 010, 011, 100, 101, 110, 111) → (r0, · · · , r7).
The binary representation (r0, · · · , r7) is often converted
into the decimal representation

∑
i ri, and this value is typ-

ically used as the “name" of the rule (or rule number). Let
us denote by di the tuple mapping to ri, and by T1 the set
of tuples mapping to one. The local rule can also be canon-
ically expressed in disjunctive normal form (DNF) as fol-
lows:

g(v0, v1, v2) =
∨

i=0:7

ri

∧
j=0:2

v
di,j

j

where dij is the j-th digit, from left to right of di (counting
from zero) and v0

j (resp. v1
j ) stands for ¬vj (resp. vj).

A fuzzy cellular automaton (FCA) is a particular contin-
uous cellular automaton where the local rule is obtained by
DNF-fuzzification of the local rule of a classical Boolean
CA. The fuzzification consists of a fuzzy extension of the
boolean operators AND, OR, and NOT in the DNF expres-
sion of the Boolean rule. Depending on which fuzzy opera-
tors are used, different types of fuzzy cellular automata can
be defined. Among the various possible choices, we con-
sider the following: (a∨b) is replaced by max{1, (a+b)}2,
(a ∧ b) by (ab), and (¬a) by (1− a) (also indicated by ā).
The resulting local rule f : [0, 1]3 → [0, 1] becomes a real
function that generalizes the canonical representation of the
corresponding Boolean CA:

f(v0, v1, v2) =
∑

i=0:7

ri

∏
j=0:2

l(vj , di,j) (1)

where l(a, 0) = 1− a and l(a, 1) = a.

Throughout this paper, we will denote local rules of
Boolean CA by gn and their fuzzifications for the corre-
sponding FCA by fn, where n is the rule number.

A rule is said to converge to an homogeneous configu-
ration (. . . p, p, p, . . . , p, p, p, . . .) if, starting from an ini-
tial configuration (. . . , x0

i−1, x
0
i , x

0
i+1 . . .) with ∀i x0

i ∈
(0, 1), we have that ∀ε > 0 ∃T such that ∀t > T and
∀i: |xt

i − xt+1
i | < ε. In this case, we will say that rule f

converges to p.

2note that, in the case of FCA, max{1, (a + b)} = (a + b)

In the paper we are interested in the behavior of self-
averaging rules: a particular class of elementary fuzzy CA.
Self-averaging rules can be written as the weighted average
of one of their variables as follows: f(x, y, z) = γx+(1−
γ)(1−x) (analogously for variables y and z). For example,
rule 30 can be written as: ((1− y)(1− z)x + ((1− y)z +
y(1− z) + yz)(1−x) and it is easy to see that, in this case
γ = (1− y)(1− z).

Table 1 contains all the elementary self-averaging rules
where x̄ indicates the value (1− x).

Rule Equation
f30 (ȳz̄)x + (ȳz + yz̄ + yz)x̄
f45 (ȳz)x + (ȳz̄ + yz̄ + yz)x̄
f54 (x̄z̄)y + (x̄z + xz̄ + xz)ȳ
f57 (x̄z)y + (x̄z̄ + xz̄ + xz)ȳ
f60 (x̄)y + (x)ȳ
f90 (x̄)z + (x)z̄
f105 (x̄y + xȳ)z + (x̄ȳ + xy)z̄
f106 (x̄ȳ + x̄y + xȳ)z + (xy)z̄
f150 (x̄z̄ + xz)y + (x̄z + xz̄)ȳ
f154 (x̄y + x̄ȳ + xy)z + (xȳ)z̄

Table 1: Self-averaging elementary fuzzy CA rules (the rules equivalent
under conjugation, reflection, or both are not indicated).

3. Fuctuations around the convergence point

In this section we study the fluctuations of all self-
averaging fuzzy rules rules around their convergence point.

3.1. Convergence

We first prove the convergence to 1
2 of all self-averaging

rules.

Lemma 3.1. Given an initial configuration X0 and any
rule of the form xt+1

i = γt
ix

t
j + (1 − γt

i )(1 − xt
j) with

j ∈ {i− 1, i, i + 1} and γt
i ∈ (0, 1) for all i and t. If there

exists 0 < γ < 1
2 such that γ ≤ γt

i ≤ (1− γ) then xt
i → 1

2
for all i as t →∞.

Proof. Without loss of generality, assume that xt
j < 1

2 , and
let xt

j = 1
2−εt

j for some 0 < εt
j < 1

2 . Then xt+1
i is bounded

by (1−γ)( 1
2−εt

j)+γ( 1
2+εt

j) and γ( 1
2−εt

j)+(1−γ)( 1
2+εt

j).
Re-arranging, we obtain | 12 − xt+1

i | < εt
j(1 − 2γ). Thus,

| 12 − xt+1
i | → 0, and xt

i → 1
2 .

Theorem 3.1. All self-averaging rules converge to 1
2 .

Proof. The proofs for rules 60, and 90 can be derived di-
rectly by applying Lemma 3.1. We now give the details for
the proof of convergence for rule 45. Proofs for the remain-
ing rules are analogous.

Recall f45(x, y, z) = (ȳz)x+(ȳz̄ +yz̄ +yz)x̄. Let γ =
mini{(x̄0

i )
2, (x0

i )
2, 1−(x̄0

i )
2, 1−(x0

i )
2}. We will show by- 656 -



induction that γ is a bound on the weights as required by
Lemma 3.1.

First note that 1 − γ = maxi{(x̄0
i )

2, (x0
i )

2, 1 −
(x̄0

i )
2, 1 − (x0

i )
2}. This follows from the fact that if α ∈

{(x̄0
i )

2, (x0
i )

2, 1 − (x̄0
i )

2, 1 − (x0
i )

2}, then so is 1 − α.
In particular, 1 − γ is in this set. Now let 1 − α =
maxi{(x̄0

i )
2, (x0

i )
2, 1− x̄0

i )
2, 1− (x0

i )
2} for some α in the

set. Then 1−α ≥ 1− γ implies that α ≤ γ. Since γ is the
minimum, we must have α = γ.

We also need to show that γ ≤ x̄0
i x

0
i+1 ≤ (1 − γ)

for all i. Assume for some i that x̄0
i ≤ x0

i+1. Then
x̄0

i x
0
i+1 ≥ (x̄0

i )
2 ≥ γ. Also, x̄0

i x
0
i+1 ≤ (x0

i+1)
2 ≤ (1− γ).

The argument is similar when x̄0
i ≥ x0

i+1.
Now assume that at time t, for all i, γ ≤ x̄t

ix
t
i+1 ≤

(1− γ). Then from the proof of Lemma 3.1, |xt+1
i − 1

2 | <
|xt

i − 1
2 | ∀i. Since either xt

i or x̄t
i must be less than or

equal to 1
2 , without loss of generality, consider xt

i ≤ 1
2 .

Then (xt
i)

2 < 1 − (xt
i)

2, and (xt
i)

2 ≤ (xt+1
i )2. Hence,

(xt+1
i )2 and 1 − (xt+1

i )2 are greater than γ which implies
in turn that they are both less than 1 − γ. We see that γ ≤
mini{(x̄t+1

i )2, (xt+1
i )2, 1− x̄t+1

i )2, 1− (xt+1
i )2} and 1−

γ ≥ maxi{(x̄t+1
i )2, (xt+1

i )2, 1− x̄t+1
i )2, 1− (xt+1

i )2}. As
before, we have γ ≤ x̄t+1

i xt+1
i+1 ≤ (1− γ).

So Lemma 3.1 applies, and ∀i, xt
i → 1

2 as t →∞.

3.2. Auto-Fluctuations

We now study the self-averaging fuzzy rules whose be-
havior around 1

2 obeys the corresponding Boolean rule. Be-
fore starting the analysis, we introduce a technical lemma.

Lemma 3.2. αβ + ᾱβ̄ is greater than 1
2 if and only if both

β and α are greater than 1
2 or both are smaller.

Proof. Assume αβ +(1−α)(1−β) > 1
2 . Rearranging we

obtain: (2α−1)β > 1
2 (2α−1). If α > 1

2 then (2α−1) > 0,
and β > 1

2 . Otherwise, if α < 1
2 then β < 1

2 .

x y z f60(x, y, z) x y z g60(x, y, z)
< < < < 0 0 0 0
< < > < 0 0 1 0
< > < > 0 1 0 1
< > > > 0 1 1 1
> < < > 1 0 0 1
> < > > 1 0 1 1
> > < < 1 1 0 0
> > > < 1 1 1 0

Table 2: Rule 60: fluctuations of the fuzzy rule around 1
2

(left);
Boolean table (right). Symbols > and < respectively indicate
values greater than or smaller than 1

2
.

Theorem 3.2. The fluctuations of fuzzy rules f60, f90, f105,
and f150 around their point of convergence of 1

2 obey their
corresponding Boolean rule.

x y z f150(x, y, z) x y z g150(x, y, z)
< < < < 0 0 0 0
< < > > 0 0 1 1
< > < > 0 1 0 1
< > > < 0 1 1 0
> < < > 1 0 0 1
> < > < 1 0 1 0
> > < < 1 1 0 0
> > > > 1 1 1 1

Table 3: Rule 150: fluctuations of the fuzzy rule around 1
2

(left);
Boolean table (right).

Proof. By Theorem 3.1 we know that all these rules con-
verge to 1

2 , we now derive their dynamics around it. Rule
60 has the following analytical form: f60(x, y, z) = (x̄)y+
(x)ȳ. By Lemma 3.2 letting α = x and β = y, we have:

f60(x, y, z) >
1
2

if
{

x < 1
2 and y > 1

2
x > 1

2 and y < 1
2

f60(x, y, z) <
1
2

if
{

x < 1
2 and y < 1

2
x > 1

2 and y > 1
2

which can be written around 1
2 as in Table 2 (left), and

which coincides with Boolean rule 60 (right) where 0 cor-
responds to < and 1 to >. The proof for rule 90 is identical,
letting α = x and β = z.

Consider now rule 150: f150(x, y, z) = (x̄z̄ + xz)y +
(x̄z + xz̄)ȳ. We apply Lemma 3.2 to this rule letting α =
(x̄z + xz̄) and β = y so that

f150(x, y, z) >
1
2

if
{

α < 1
2 and y > 1

2
α > 1

2 and y < 1
2

f150(x, y, z) <
1
2

if
{

α < 1
2 and y < 1

2
α > 1

2 and y > 1
2

.

Then we apply the lemma directly to α:

α >
1
2

if
{

x < 1
2 and z > 1

2
x > 1

2 and z < 1
2

α <
1
2

if
{

x < 1
2 and z < 1

2
x > 1

2 and z > 1
2

. .

Combining these results, we obtain:

f150(x, y, z) >
1
2

if


x < 1

2 and y < 1
2 and z > 1

2
x < 1

2 and y > 1
2 and z < 1

2
x > 1

2 and y < 1
2 and z < 1

2
x > 1

2 and y > 1
2 and z > 1

2

f150(x, y, z) <
1
2

if


x < 1

2 and y < 1
2 and z < 1

2
x < 1

2 and y > 1
2 and z > 1

2
x > 1

2 and y < 1
2 and z > 1

2
x > 1

2 and y > 1
2 and z < 1

2

which again describes a fluctuation table around 1
2 that co-

incides with the corresponding Boolean rule table 3 of rule
150. The proof for rule 105 follows in the same way letting
α = (x̄ȳ + xy) and β = z when applying Lemma 3.2.- 657 -



3.3. Other fluctuations

Analysis of the remaining self-averaging rules is a little
more complex.

Theorem 3.3. As fuzzy rules f45, f57, f106, f154, f39 and
f54 converge to 1

2 , their fluctuations around 1
2 obey the

Boolean rules listed here: f45 obeys g15; f57 obeys g51;
f106 obeys g170; f154 obeys g170; f30 obeys g15; f54 obeys
g51.

Proof. By Theorem 3.1, we know that all these rules con-
verge to 1

2 . We will give the proof of the fluctuations
in detail for rule 45. Similar arguments show the be-
haviours of the other rules. We apply Lemma 3.2 to rule
45: f45(x, y, z) > 1

2 when x > 1
2 and ȳz = (1− y)z > 1

2
or when x < 1

2 and (1 − y)z < 1
2 . We begin by assuming

that x > 1
2 . Then (1− y)z > 1

2 if (1− y) > 1
2 (so y < 1

2 )
and z > 1

2(1−y) . As y → 1
2 , 1

2(1−y) → 1 so that when y

and z are close enough to 1
2 , z is never greater than 1

2(1−y) .

More precisely, when 1
2 −

(
√

2−1)
2 < y, z < 1

2 + (
√

2−1)
2 ,

1
2(1−y) > 1

2 + (
√

2−1)
2 > z, hence f45(x, y, z) < 1

2 .
If instead x < 1

2 , f45(x, y, z) > 1
2 if (1 − y)z < 1

2
which is true whenever y > 1

2 or z < 1
2(1−y) . As before,

as y → 1
2 , 1

2(1−y) → 1 so that this condition is always true
on the interval given above.

In other words, the fluctuations of the fuzzy rule resem-
ble Boolean rule 15 (see Table 4).

x y z f45 x y z g15

< < < > 0 0 0 1
< < > > 0 0 1 1
< > < > 0 1 0 1
< > > > 0 1 1 1
> < < < 1 0 0 0
> < > < 1 0 1 0
> > < < 1 1 0 0
> > > < 1 1 1 0

Table 4: Fuzzy rule 45 in proximity of 1
2

: fluctuations around 1
2

(left); corresponding Boolean behavior coinciding with rule 15.

4. Characterization

We can actually show that, up to equivalence, the self-
averaging rules of Section 3.2 are the only elementary rules
displaying the auto-fluctuating behavior described in this
paper. In fact, it can be shown by tedious, exhaustive anal-
ysis that only self-averaging rules converge to 1

2 .

Theorem 4.1. All and only rules f60, f90, f105, and f150

are elementary rules which fluctuate around their point of
convergence obeying their corresponding Boolean rule.
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