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Abstract—In our recent study, the dynamics of some el-
ementary cellular automata rules are investigated in the bi-
infinite symbolic sequence space. These rules, as members
of the Wolfram class II and Chua’s topologically-distinct
Bernoulli-shift rules, which were believed to be simply pe-
riodic before, actually display rich and complex dynamics.
Rules 2 and 35, for example, to be discussed in this paper,
are chaotic in the sense of Li-Yorke and/or Devaney; they
are topologically transitive or topologically mixing; they
have positive topological entropies; and they show a cata-
log of gliders and glider collisions.

1. Introduction

Cellular Automata (CA), formally introduced by Neu-
mann in the early 1950’s, are a class of spatially and tem-
porally discrete, deterministic mathematical systems char-
acterized by local interactions and an inherently parallel
from evolution [1]. Twenty years later, Conway proposed
his now-famous game of life [2]. From a theoretical point
of view, it is interesting because it has the power of a uni-
versal Turing machine: anything that can be computed al-
gorithmically can be computed within this game of life.
Mathematical theory of CA was further developed by Hed-
lund in 1969 [3], who viewed one-dimensional CA (1D
CA) in the context of symbolic dynamics as homomor-
phisms of the full shift. His main research is not directly
related to the characterizations of surjective and open CA
but with the current problems in symbolic dynamics. In the
early 1980’s, Wolfram carried out intensive research on dy-
namical and computational aspects of CA [4-6]. He clas-
sified the 256 elementary cellular automata (ECA) infor-
mally into four classes using dynamical concepts like peri-
odicity, stability, chaos and complexity. In 2002, Wolfram
introduced his monumental work A New Kind of Science
[7]. Based on this work, Chua et al. provided a nonlinear
dynamics perspective to Wolfram’s empirical observations
from the viewpoint of mathematical analysis using tools
like characteristic function, forward time-τ map, basin tree
diagram and Isle-of-Eden digraph [8-11].

Although there are 256 ECA rules, only 88 rules are
globally independent from each other. These 88 rules are

organized into four groups with distinct qualitative dy-
namics, corresponding to random initial configurations:
period-k rules (k = 1, 2, 3, 6), Bernoulli-shift rules,
complex Bernoulli-shift rules and hyper-Bernoulli-shift
rules. By using random bit strings as testing signals,
30 topologically-distinct Bernoulli-shift rules have been
found, via extensive computer simulations and analytical
studies, to exhibit robust Bernoulli-shift steady-state be-
havior. Even more remarkable is their robustness in the
sense that any random initial bit string could converge to
one of these robust Bernoulli-shift attractors. In particu-
lar, each Bernoulli attractor is parameterized by three inte-
gers (σ, τ, β) satisfying β = ±2σ. A Bernoulli-shift attractor
with β > 0 simply implements a left shift (if σ > 0) or a
right shift (if σ < 0) of |σ| bits in every τ iterations. If
β < 0, the same operation is followed by complementation
(i.e. changing symbol of all bits) during each operation (i.e.
every τ iteration).

Due to the fact that many topological properties such
as topological entropy, sensitivity and topologically mix-
ing of CA are undecidable [12, 13], one should, in princi-
ple, separately analyze time-asymptotic dynamics for each
Bernoulli-shift rule in the bi-infinite binary sequence space
S Z . At present, their long-term dynamical behaviors are an-
alyzed from the viewpoint of symbolic dynamics [15-20].

2. Complex symbolic dynamics of Bernoulli-shift rules

For a finite symbol set S = {0, 1, · · · , k − 1}, a word over
S is a finite sequence a = (a0, · · · , an−1) of elements in S .
Denote by S ∗ =

∪
n≥0 S n the set of words over S , where

S n is the set of all words of length n. If a is a finite or
infinite-length word and I = [i, j] is an interval of inte-
gers on which a is defined, then write a[i, j] = (ai, · · · , a j)
and a[i, j) = (ai, · · · , a j−1). Also, b is a subword of a, de-
noted by b ≺ a, if b = aI for some interval I ⊆ Z; oth-
erwise, denoted by b ⊀ a. The set of bi-infinite words is
denoted by S Z . In S Z , the cylinder set of a word a ∈ S n is
[a]k = {x ∈ S Z | x[k,k+n) = a}, where k ∈ Z. Obviously, the
cylinder sets generate the topology on S Z and form a count-
able basis for this topology. Every open set is a countable
union of some cylinder sets. For a self-map f on S Z , a set
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X ⊆ S Z is f -invariant if f (X) ⊆ X, and strongly f -invariant
if f (X) = X. If X is closed and f -invariant, then (X, f ) or
simply X is called a subsystem of (S Z , f ). For instance, let
A denote a set of some finite words over S , and Λ = ΛA

be the set consisting of the bi-infinite words in A . Then,
ΛA is a subsystem of (S Z , σ), where A is said to be the
determinative block system of Λ with σ : S Z −→ S Z de-
fined by [σ(x)]i = xi+1. For a closed σ-invariant subset
Λ ⊆ S Z , the subsystem (Λ, σ) or simply Λ is called a sub-
shift of σ. The topological dynamics of a subshift of finite
type is largely determined by the properties of its transition
matrix A [14]. A matrix A is positive if all of its entries are
non-negative; irreducible if ∀i, j, there exists n such that
An

i j > 0; aperiodic if there exists M, such that An
i j > 0,

∀n > M and ∀i, j. If ΛA is a 2-order subshift of finite type,
then it is topologically mixing if and only if A is aperiodic,
where A is its associated transition matrix with Ai j = 1, if
(i, j) ≺ Λ; otherwise Ai j = 0.

By a theorem of Hedlund [3], a map f : S Z −→ S Z is a
cellular automaton if and only if it is continuous and com-
mutes with the shift map σ, i.e., σ◦ f = f ◦σ. For any CA,
there exists a radius r ≥ 0 and a local rule N : S 2r+1 −→ S
such that [ f (x)]i = N(x[i−r,i+r]). Moreover, (S Z , f ) is a
compact dynamical system. To enhance readability, it is
desirable to write a CA as a global map fN for local rule
N, where N is the decimal notation in light of Wolfram’s
scheme. For one-dimensional elementary cellular automata
(ECA), r = 1 and S = {0, 1}. For example, rule 2 is the one
for which N(0, 0, 1) = 1 and N(x[i−1,i+1]) = 0 for all other
triples. Based exclusively on the rule, the following propo-
sition is a direct consequence.

Proposition 1 For rule 2, there exists a subset Λ ⊂ S Z

such that f2|Λ = σ|Λ, where Λ = {x ∈ S Z | x[i−1,i+1] ∈
A ,∀i ∈ Z} and A = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}.

According to Proposition 1, dynamical behaviors of f2
on Λ can be characterized via a subshift Λ, which is a sub-
shift of finite type. Observe that the transition matrix A of
the 2-order subshift, which is topologically conjugate to Λ,
is

A =


0 0 1 0
0 0 0 1
1 1 0 0
0 0 1 0

 .
One can easily verify that A is irreducible and aperiodic.

Proposition 2
(a) f2 is topologically mixing on Λ;
(b) Λ is the nonwandering set Ω( f2) and the global attrac-
tor of f2;
(c) the topological entropy of f2 equals log ρ(A) = log λ0 ≈
0.382, where ρ(A) is the spectral radius of the transition
matrix A and λ0 is the positive real root of λ3 − λ2 − 1 = 0.

It is well known that positive topological entropy implies
chaos in the sense of Li-Yorke, and topologically mixing

is also an indication of complexity of dynamical systems.
A system with topologically mixing property has many
chaotic properties by different means. In conclusion, the
above two propositions have led to the following theorem.

Theorem 1
(a) f2 is chaotic in the sense of both Li-Yorke and Devaney
on the global attractor Λ;
(b) f2 is chaotic in the sense of Li-Yorke on S Z .

Remark 1 Rules 2, 10, 34, 42, 46, 130, 138 and 162 have
the same shifting mode: shift the bit strings to the left by
one bit in every iteration, i.e., they have the same Bernoulli-
shift attractor parameters (σ, τ, β) = ( 1, 1, +). In order to
describe the Bernoulli shifting dynamics in an unambigu-
ous way, analogous results for these rules are listed in Ta-
ble 1. Column 3 displays the approximation of topological
entropy log λ0, where λ0 is the positive real root of the char-
acteristic equation of the corresponding transition matrix.
Column 5 shows the topologically conjugate rules associ-
ated with rule N.

N topologically
mixing

topological
entropy

chaotic
property

equivalent
rules

2 yes 0.382
Li-Yorke

and
Devaney

16,192,247

10 yes 0.481
Li-Yorke

and
Devaney

80,175,245

34 yes 0.481
Li-Yorke

and
Devaney

48,187,243

42 yes 0.609
Li-Yorke

and
Devaney

112,171,241

46 yes 0.382
Li-Yorke

and
Devaney

116,139,209

130 no 0.382 Li-Yorke 144,190,246

138 yes 0.562
Li-Yorke

and
Devaney

208,174,244

162 no 0.481 Li-Yorke 176,186,242

Table 1: Summary of quantitative properties of robust
Bernoulli-shift rules 2, 10, 34, 42, 46, 130, 138 and 162
with the same parameters (σ, τ, β) = ( 1, 1, +).

Similar analytic arguments can also be applied to all
other robust Bernoulli-shift rules. In addition to the 8
Bernoulli-shift rules listed so far (with the same Bernoulli
parameters), there are 22 additional ones possessing up
to three robust Bernoulli attractors. Space limitation pre-
cludes a more detailed analysis of the others. Main dynam-
ical properties of typical Bernoulli-shift rules 3, 7, 11, 24,
35, 142, and 74 have been derived and exhibited in Table
2, but for others it is referred to [15-19].

Remark 2 It has been shown that some special exam-
ples of Chua’s robust period rules also exhibit non-robust
Bernoulli-shift behaviors for both finite and bi-infinite
cases [20].
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N
Bernoulli

parameters
(σ, τ, β)

topolo
-gically
mixing

topological
entropy

equivalent
rules

3 ( 1, 2,+) yes 0.281 17,63,119
7 (−1, 2,+) yes 0.425 21,31,87

11 (−1, 1,−)
( 1, 1,+)

yes
yes

0.481
0.199 47,81,117

24 (−1, 1,+) yes 0.382 66,189,231

35 ( 1, 1,+)
(−1, 2,+) yes 0.281

0.562 49,59,115

142 ( 1, 1,+)
(−1, 1,−)

yes
yes

0.481
0.481 212

74
( 1, 1,+)
( 2, 2,+)
(−3, 3,+)

yes
yes
no

0.382
0.464
0.322

88,173,229

Table 2: Summary of quantitative properties of robust
Bernoulli-shift rules 7, 24, 35, 142 and 74 with distinct
Bernoulli shifting types.

3. Gliders and collisions in Bernoulli-shift rules

ECA rules 54 and 110, which are classical examples of
Wolfram’s class IV, have been an object of special atten-
tion due to their ability to generate rich varieties of peri-
odic structures, known as particles or gliders [7, 21, 22]. A
glider is a compact group of non-quiescent states travelling
along cellular automata lattice. Gliders are believed to be
the characteristic signatures allowing one to recognize class
IV behavior, whereas all types of Bernoulli-shift dynamics
can also be considered as gliders. Certainly, the catalog
of all possible gliders and glider collisions is less plentiful
than that of rules 54 and 110. These ideas are formalized
under the framework of symbolic dynamics below.

For a CA rule N and its global map fN , an infinite cyclic
configuration x is x = a∗ = (· · · , a, a, a, · · ·) ∈ S Z , where
a = (a0, a1, · · · , an−1) ∈ S n. Further, a∗L = (· · · , a, a)
and a∗R = (a, a, · · ·) stand for left-infinite cyclic configu-
ration and right-infinite cyclic configuration, respectively.
The evolution orbit {x, fN(x), f 2

N(x), f 3
N(x) · · ·}, denoted by

OrbN(x), is said to be a background ether or background
pattern of rule N, if there exist nonnegative integers m, m′,
k and k′ such that f m

N (x) = σk
L(x) and f m′

N (x) = σk′
R (x),

where the sequence a is called an ether factor.
Suppose that x = a∗ is an infinite cyclic configuration

with a ∈ S n and b ∈ S n′ such that b , (
k︷      ︸︸      ︷

a, a, · · · , a ), k ∈
Z+, and let x̃ = (a∗L, b, a

∗
R). Then:

(1) if there exist nonnegative integers m and k such that
f m
N (x̃) = σk

R(x̃), then the orbit OrbN ˜(x) is called a right
glider of rule N with velocity k/m;

(2) if there exist nonnegative integers m and k such that
f m
N (x̃) = σk

L(x̃), then the orbit OrbN ˜(x) is called a left glider
of rule N with velocity −k/m;

(3) if there exists nonnegative integer m such that
f m
N (x̃) = x̃, then the orbit OrbN ˜(x) is called a fixation glider

of rule N with zero velocity;
(4) if the orbit OrbN ˜(x) is a right (left, fixation) glider,

then the subsequence b ≺ x̃ is called a glider factor of rule
N;

(5) if b and c are two glider factors of rule N with
disagreed velocities, then the evolutionary orbit OrbN(y)
is called a glider collision of rule N, where y =

(a∗L, b,
k︷  ︸︸  ︷

a, · · · , a, c, a∗R).
In the following, the background ether, gliders and glider

collisions of rule 35 are further discussed.

Proposition 3 For ECA rule 35, the evolutionary orbit
Orb35(x) is a background ether, where x = (0, 0, 1)∗; that
is, (0, 0, 1) is an ether factor of rule 35.

Fig. 1: Background ether of rule 35.

Proposition 4 Let y = (a∗L, b, a
∗
R), a = (0, 0, 1) and b =

(0, 1). Then, the evolutionary orbit Orb35(y) is a left-glider
with velocity −1 of rule 35.

Proposition 5 Let y = (a∗L, b, a
∗
R), a = (0, 0, 1), and

b = (0), (1, 1), (0, 0, 0), (1, 1, 0), (1, 1, 0, 0, 0) and
(1, 1, 0, 0, 0, 0)), respectively. Then, these evolutionary or-
bits Orb35(y) are all right-gliders with velocity 1/2 of rule
35.

Fig. 2: A left-glider and six right-gliders of rule 35.

Proposition 6 For y = (a∗L, b,
k︷      ︸︸      ︷

a, a, · · · , a, c, a∗R), the evo-
lutionary orbit Orb35(y) is a glider collision of rule 35,
if a = (0, 0, 1), b = (0), c = (0, 1), or a = (0, 0, 1),
b = (1, 1, 0), c = (0, 1).

Fig. 3: Glider collisions in rule 35.

It is now clear that there are two types of collision out-
comes in rule 35: (1) annihilation of gliders and stationary
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localization; (2) collision between two gliders leading to
another type of glider. For ease of visualization, the back-
ground ether, gliders and glider collisions of rule 35 are
illustrated in Figs. 1, 2 and 3, respectively, where the black
square or blue square stands for “1”, and the white square
or orange square stands for “0” in the spatiotemporal evo-
lution patterns (colors online).

4. Conclusion

The past few years have witnessed some dramatic ad-
vances in the field of cellular automata. One of the
main challenges is to explore the quantitative dynamics
of these dynamical systems. By taking advantage of ro-
bust Bernoulli-shift rules uncovered by Chua and his col-
leagues, we have developed an elementary yet rigorous
proof to explain their chaotic dynamics in view of symbolic
dynamics. That is, the intrinsic complexity of all of these
Bernoulli-shift rules is quite high according to the usual
features that quantify the complexity of discrete dynamics,
such as topological entropy and topologically mixing. It
is worth mentioning that the qualitative property of glider
collision plays an important role in giving a quantitative in-
terpretation of the global dynamics of some CA rules in the
bi-infinite sequence space S Z .
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