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Abstract—Using dynamic voltage scaling (DVS) tech-
nique, we can reduce the CPU power consumption by set-
ting a low CPU frequency. In this paper, we improve the
elastic scheduling proposed by Marinoni and Buttazzo. We
adopt a force compressing tasks as the performance degra-
dation and resolve a trade-off between the power consump-
tion and the performance of tasks with desired rate. We
propose a power-aware elastic scheduling algorithm, by
which we optimize an objective function given by weighted
sum of the power consumption and the force. By simula-
tion, we demonstrate the efficiency of the proposed algo-
rithm. Its computational complexity is polynominal.

1. Introduction

Since embedded systems have been spread to various en-
gineering fields, the reduction of their power consumption
has been one of the important issues. The CPU using dy-
namic voltage scaling (DVS) can set the supply voltage and
the CPU frequency to specified discrete levels and lead to
degradation of the power consumption by setting lower lev-
els [1, 2]. However, it also causes increase of the task exe-
cution times and the overload situation.
Flexible task models can vary the task execution times

so that the achieved performance may change [3]. For ex-
ample, in the elastic task model, the CPU utilizations of
the tasks are modified by changing their periods in each
admissible range [4, 5]. Using flexible task models, we
can achieve dramatic power saving with avoiding the dead-
line miss. Marinoni and Buttazzo introduce the elastic task
model to a DVS management where the CPU frequency
is selected according to a strategy [6], and they generalize
it to dynamical scheduling [7]. They propose three strate-
gies: Energy saving mode, High performance mode, and
User mode. However, in User mode, user decides the CPU
frequency with no precise indicators. In this paper, we pro-
pose an optimization-based method for the DVS manage-
ment to resolve the trade-off.
The rest of paper is organized as follows: Section 2 re-

views elastic scheduling proposed in [6]. Section 3 intro-
duces an objective function. In Section 4, we propose an
algorithm minimizing the objective function and verify the
suspensive conditions. Section 5 presents a simulation re-
sult and Section 6 concludes the paper.

2. Elastic Scheduling

The elastic scheduling proposed in [6] is composed by
three parts, calculating the speed selection range, setting
the operating speed according to a selected strategy, and
computing task periods. In this section, we review the
task model and these three procedures. A CPU frequency
is assumed to take m discrete levels in a frequency range
[ fmin, fmax], and we set the supply voltage as the mini-
mum level compatible with the CPU frequency. Proces-
sor speed is defined as normalized frequency s = f / fmax
(s ∈ [smin, smax] = [ fmin/ fmax, 1]).
2.1. Task Model

In [6], the task execution time is generalized to be
divided into two parts: one is dependent on the CPU
frequency, and the other is independent. The task set
{τ1, τ2, · · · , τn} is assumed to be independent and pe-
riodic. Each task τi is characterized by a 5-tuple
τi(Cimax , φi,Timin ,Timax , Ei), where Cimax is the execution time
at the maximum processor speed smax, φi is the rate of the
frequency-dependent part of the execution time, Timin is the
minimum period, Timax is the maximum period, and Ei is
the elastic coefficient.
The task execution time is expressed as

Ci(s) =
φiCimax
s
+ (1 − φi)Cimax . (1)

Let Ti be the actual period of task τi. Then the CPU utiliza-
tion of task τi is expressed as

Ui(s) =
Ci(s)
Ti
=
φiCimax
sTi

+
(1 − φi)Cimax

Ti
. (2)

Task period Ti varies continuously in the range [Timin , Timax ]
and the CPU utilization Ui varies in [Uimin(s), Uimax (s)],
where

Uimin (s) =
φiCimax
sTimax

+
(1 − φi)Cimax

Timax
,

Uimax (s) =
φiCimax
sTimin

+
(1 − φi)Cimax

Timin
.

The parameter φi can be obtained by measuring Cimax =
Ci(smax) and Cimin = Ci(smin), that is, from Eq. (1), we have

Cimin =
φiCimax
smin

+(1−φi)Cimax ⇔ φi=
Cimin−Cimax
Cimax

smin
1−smin .
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2.2. Speed selection by three strategies

The speed selection range [se, sp] is calculated as

se=min
k
{sk |sk ≥ s∗e}, sp=mink {sk |sk ≥ min(s∗p, smax)},

where s∗e=

∑n
i=1
φiCimax
Timax

Ud−∑ni=1 (1−φi)CimaxTimax

, s∗p=

∑n
i=1
φiCimax
Timin

Ud−∑ni=1 (1−φi)CimaxTimin

.

The lowest and the highest performance are achieved with
s∗e and s∗p, respectively. Since the processor speed has dis-
crete range, they may not be configurable and need to be
restricted to discrete values se and sp. Note that if s∗e is out
of the range [0, 1], the task set is not feasible.
The operating speed s is set in the range [se, sp] accord-

ing to a selected strategy. If Energy saving mode and High
performance mode are selected, it is set to se and sp, re-
spectively. If User mode is selected, user sets the operating
speed with no systematic policies for the selection. In this
paper, we propose an algorithm for the selection of the op-
erating speed to resolve the trade-off with a desired rate.

2.3. Elastic Algorithm

Let U be the total CPU utilization of the task set and
Ud be the maximum total CPU utilization guaranteeing the
schedulability. The elastic algorithm determines the task
periods under the constraint U = Ud, described as follows:

∀τi ∈ Γv Ui(s)=Uimax(s)−
(
Uvmax(s)−Ud+Uf (s)

) Ei
Ev
,(3)

where Uvmax (s) =
∑

τi∈Γv
Uimax (s), (4)

Uf (s) =
∑

τi∈Γ f
Uimin (s), (5)

Ev =
∑

τi∈Γv
Ei, (6)

where Γ f and Γv are the fixed task set and the variable task
set, respectively. If task τi ∈ Γv is compressed less than its
minimum CPU utilization by Eq. (3), it is fixed (Ui(s) =
Uimin (s)), and then we recompute the CPU utilization of the
new variable task set. These steps are repeated until all
tasks lie in the utilization range [Uimin (s), Uimax (s)].

3. Optimization-based Resolution of the Trade-off

3.1. Power Consumption Model

In general, the power consumption in computing systems
is modeled as

P(s) = K3s3 + K1s + K0, (7)

where each term represents the power consumption of the
subsystem in which both of the supply voltage and the pro-
cessor speed are variable, only the processor speed is vari-
able, and both of them are fixed, respectively[1]. All power
coefficients K3,K1,K0 are assumed to be nonnegative.

3.2. Compressing Force and Adequate Task Sets

We consider a force compressing tasks as performance
degradation. From Eq. (3), for all tasks τi ∈ Γv, we obtain
F(s)Γ f ,Γv =

Uvmax (s)−Ud+Uf (s)
Ev

=
Uimax (s)−Ui(s)

Ei
. (8)

Since the force is applied to compress tasks in the variable
task set, the increase of fixed tasks results in the degrada-
tion of the force. However, to control compressing rate cor-
responding to the elastic coefficients, we have to minimize
the number of fixed tasks keeping the task set feasible. We
define adequate sets as the sets satisfying this condition.
We can obtain them by the elastic algorithm with the initial
fixed state Γ f0 = ∅, and we have the following proposition.
Prop. 1 Let (Γ∗f , Γ

∗
v) be the adequate sets for the operating

speed s, then the following inequation holds.

F(s)Γ∗f ,Γ∗v > F(s)Γ f ,Γv
∀Γ f � Γ∗f . (9)

Proof: Since the speed is fixed, we omit the notation of s.
Since the adequate sets satisfy Eqs. (3)-(6), we have

∀τi ∈ Γ∗v U∗
i =Uimax−EiFΓ∗f ,Γ∗v ≥Uimin , (10)

∀τi ∈ Γ∗f U∗
i =Uimax−EiFΓ∗f ,Γ∗v <Uimin . (11)

Using the elastic algorithm, U = Ud always holds. Then,
for the pair (Γ∗f , Γ

∗
v) and (Γ f , Γv), we have

Ud =
∑

τi∈Γ∗v

(
Uimax − EiFΓ∗f ,Γ∗v

)
+
∑

τi∈Γ∗f
Uimin , (12)

Ud =
∑

τi∈Γv

(
Uimax − EiFΓ f ,Γv

)
+
∑

τi∈Γ f
Uimin . (13)

The relations between the two pairs can be described as

Γ f = Γ
∗
f \Γv ∪ Γ∗v\Γv, Γv = Γ∗f \Γ f ∪ Γ∗v\Γ f . (14)

From Eqs. (10), (11), (12), (14), we obtain

Ud =
∑

τi∈Γ∗v

(
Uimax − EiFΓ∗f ,Γ∗v

)
+
∑

τi∈Γ∗f
Uimin

=
∑

τi∈Γ∗v\Γ f

(
Uimax−EiFΓ∗f ,Γ∗v

)
+
∑

τi∈Γ∗v\Γv

(
Uimax−EiFΓ∗f ,Γ∗v

)

+
∑

τi∈Γ∗f \Γ f
Uimin+

∑

τi∈Γ∗f \Γv
Uimin

>
∑

τi∈Γ∗v\Γ f

(
Uimax−EiFΓ∗f ,Γ∗v

)
+
∑

τi∈Γ∗v\Γv
Uimin

+
∑

τi∈Γ∗f \Γ f

(
Uimax−EiFΓ∗f ,Γ∗v

)
+
∑

τi∈Γ∗f \Γv
Uimin

=
∑

τi∈Γv

(
Uimax − EiFΓ∗f ,Γ∗v

)
+
∑

τi∈Γ f
Uimin . (15)

From Eqs. (13), (15), we have
∑

τi∈Γv

(
Uimax−EiFΓ f ,Γv

)
>
∑

τi∈Γv

(
Uimax−EiFΓ∗f ,Γ∗v

)

⇔ FΓ f ,Γv < FΓ∗f ,Γ∗v .

Thus, we have Eq. (9). �
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3.3. Objective Function

We define an objective function as weighted sum of the
power consumption and the force with a weight parameter
w, which is the relative importance of the reducing power
consumption. Note that w = 0 and w = 1 correspond to
High performance mode and Energy saving mode, respec-
tively. The objective function is described as follows:

W(s)Γ f ,Γv = wP(s) + (1 − w) k · F(s)Γ f ,Γv (0≤w≤1), (16)
where k is the scaling factor to adjust scales of the power
consumption and the force. By setting the processor speed
s and the adequate sets (Γ∗f , Γ

∗
v) to minimize the objective

function, we can resolve the trade-off. When an optimized
solution (s, Γ∗f , Γ

∗
v) is obtained, task periods are calculated

by Eq. (2). From Proposition 1, the objective function is
maximized at the adequate sets if s is fixed and it is re-
garded as a function with respect to Γ f and Γv. Moreover,
since P(s) and F(s)Γ f ,Γv are convex with respect to s, the
objective function is also convex.
We define the threshold force of task τi as

Fimax (s) =
1
Ei
(
Uimax (s) − Uimin (s)

)
. (17)

It depends on five task parameters and leads to Ui(s) =
Uimin (s). If the threshold force of task τi is less than the
force compressing the variable task set, task τi has to be-
long to the fixed task set, otherwise Ui(s) < Uimin (s) holds
and task τi violates its CPU utilization range.
In this paper, a scaling factor k is given by

k =
P(sp) − P(se)

mini=1..n Fimax (se) − F(sp)Γ f p,Γvp
. (18)

Although the compressing force clearly takes its maximum
at the lowest speed se and its adequate set (Γ f e, Γve), it is
complex to calculate. The threshold force can be calculated
easier, and their relation is described as

F(se)Γ f e,Γve ≤ mini=1..n
Fimax (se), (19)

where we have equality if and only if s∗e is equal to se.
Therefore, we approximately treat the minimum of the
threshold force as the maximum of the force in Eq. (18).

4. Algorithm and Suspensive Conditions

4.1. Algorithm

We propose the following algorithm to obtain the opti-
mal solution which minimizes the objective function for a
given weight parameter w. Let spr be the next level higher
than sn,Uipr andUi be the adequate CPU utilization of tasks
for spr and sn, and (Γ f pr,Γvpr), (Γ f n,Γvn), and (Γ f p,Γvp) be
the adequate sets for spr, sn, and sp, respectively. It searches
the optimal solution decreasing the speed from the highest
speed sp, where STEP 2, 4, and 6 indicate the suspensive
conditions. Note that, for calculating W(s)Γ f ,Γv , we need to
calculate the CPU utilizations for (s,Γ f ,Γv) by Eqs. (3)-(6).

STEP 1. Calculate Uipr = Ui(sp) (i = 1..n) and Wpr =

W(sp)Γ f p,Γvp by Eqs. (3)-(6), (8), (16), and set spr and
sn to sp and the next level lower than sp, respectively.

STEP 2. If sn < se holds, go to STEP 8.

STEP 3. If sn ≥ se holds, calculateW = W(sn)Γ f pr ,Γvpr .
STEP 4. If W ≥ Wpr holds, go to STEP 8.

STEP 5. If W < Wpr holds, calculateW = W(sn)Γ f n,Γvn .

STEP 6. IfW ≥ Wpr holds, go to STEP 8.

STEP 7. If W < Wpr holds, assign spr = sn, Wpr = W,
Uipr =Ui (i = 1..n) and decrease sn, and go to STEP 2.

STEP 8. Using the optimal solution (spr, Uipr (i = 1..n)),
calculate the optimal task periods by Eq. (2).

4.2. Verification of Suspensive Conditions

In the proposed algorithm, we have three suspensive
conditions: sn < se, W(sn)Γ f pr ,Γvpr ≥ W(spr)Γ f pr ,Γvpr , and
W(sn)Γ f n,Γvn ≥ W(spr)Γ f pr ,Γvpr . The first condition means
completion of comparing the objective functions for all
speeds in the range [se, sp]. We have the following propo-
sition for the second and the third suspensive condition.

Prop. 2 If the second or the third suspensive condition
holds, the optimal solution is (spr, Γ f pr, Γvpr), that is,

W(s)Γ∗f ,Γ∗v > W(spr)Γ f pr ,Γvpr (
∀s < sn). (20)

Proof: We define (Γ∗f , Γ
∗
v) as the adequate sets for s.

For the second suspensive condition, since W(s)Γ f pr ,Γvpr
is convex, we have

W(sn)Γ f pr ,Γvpr ≥ W(spr)Γ f pr ,Γvpr
⇔ W(s)Γ f pr ,Γvpr >W(spr)Γ f pr ,Γvpr (

∀s < sn). (21)

From Proposition 1, the objective function takes its maxi-
mum value at the adequate sets. Then we have

W(s)Γ∗f ,Γ∗v > W(s)Γ f pr ,Γvpr . (22)

From Eqs. (21), (22), we obtain

W(s)Γ∗f ,Γ∗v > W(spr)Γ f pr ,Γvpr (
∀s < sn). (23)

Thus, we have Eq. (20).
For the third suspensive condition, from Proposition 1

and the assumption, we have

W(sn)Γ f n,Γvn ≥ W(spr)Γ f pr ,Γvpr > W(spr)Γ f n,Γvn . (24)

Since W(s)Γ f n,Γvn is convex, we have

W(s)Γ f n,Γvn > W(sn)Γ f n,Γvn (
∀s < sn). (25)

For the adequate sets (Γ∗f , Γ
∗
v), we have

W(s)Γ∗f ,Γ∗v > W(s)Γ f n,Γvn . (26)

From Eqs. (24), (25), (26), we obtain

W(s)Γ∗f ,Γ∗v > W(spr)Γ f pr ,Γvpr (
∀s < sn). (27)

Thus, we have Eq. (20). �
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Table 1: Task set for the simulation.

Cimax φi Timin Timax Ei
Task1 0.80 0.20 4.0 14.0 5.5
Task2 0.80 0.70 4.0 14.0 5.5
Task3 0.25 0.65 4.5 12.0 6.0
Task4 0.90 0.80 7.0 15.0 0.5
Task5 1.2 0.80 3.0 21.0 4.0

Table 2: The optimal task periods with respect to the oper-
ating speed s.

T1 T2 T3 T4 T5
s = 1.0 4.48 4.48 7.79 7.11 3.12
s = 0.80 6.10 5.77 12.0 7.31 3.36
s = 0.60 14.0 9.08 12.0 7.57 3.72
s = 0.40 14.0 14.0 12.0 8.69 6.01
s = 0.20 14.0 14.0 12.0 14.3 21.0

5. Simulation Result

In this section, we present a simulation result performed
to verify the proposed algorithm. We assume that the CPU
frequency takes 10 discrete levels (0.15, 0.20, 0.30, 0.40,
0.50, 0.60, 0.70, 0.80, 0.90, 1.0 [GHz]), the power con-
sumption coefficients are set to (K3,K1,K0) = (15.3, 0, 0),
the maximum total CPU utilization is set to Ud = 0.90, and
the task set is given in Table 1. The speed selection range
is calculated as se = 0.20, sp = 1.0.
Shown in Fig. 1 is the power consumption and the ade-

quate force with respect to the weight parameter w. They
are piece-wise constant according to the discrete change of
the optimal speed s. The lower w becomes, the higher the
processor speed becomes so that all tasks are executed with
higher performances. On the other hand, the higher w be-
comes, the lower the processor speed becomes so that the
power consumption is larger reduced.
Shown in Table 2 is the relationship between the operat-

ing speed and the optimal task periods. Tasks 1 and 2 have
the same task parameters except φi. So, their periods equal
at s = 1.0. Since φ1 < φ2, however, C1(s) < C2(s) holds
at s < 1.0. Then the period of Task 1 is larger than that
of Task 2 at s = 0.80 and 0.60 and both tasks are fixed at
s = 0.40 and 0.20. On the other hand, Task 5 has a wider
interval of the CPU utilization [Uimin(s), Uimax (s)] than Task
4 for all configurable speeds. But, E5 is quite larger than
E4 so that the increase of the period of Task 5 is more rapid
than that of Task 4. Thus, Task 5 is fixed at s = 0.20 while
Task 4 is in the variable task set for any processor speed.

6. Conclusions

In this paper, we extended the DVS management with
the elastic scheduling to resolve the trade-off with respect
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Figure 1: The optimal power consumption P(s) and ade-
quate force F(s) with respect to w.

to the desired weight parameter w, by adopting the com-
pressing force as the degradation of task performance. The
proposed optimization-based algorithm can select the opti-
mal speed for a given w and obtain the optimal task peri-
ods according to the elastic coefficients. Its computational
complexity is expressed as O(mn2), where m and n are
number of the configurable CPU frequency levels and the
tasks, respectively. Practically, it is considered as O(n2),
since m ≤ 10 for the current commercial CPU supported
DVS technique. In future work, we extend the algorithm to
dynamical scheduling, considering the usage of idle states
generated by early completion of tasks.
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