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Abstract—The time series of the annual number of

Canadian lynx caught by the Hudson Bay company be-

tween 1821 and 1935 exhibits pseudo-cyclic behaviour and

has long been considered as an archetypal example of irreg-

ularly fluctuating population dynamics. Recently proposed

global polynomial models of this data have been found to

exhibt chaotic dynamics and were therefore presented as

direct evidence of chaos in a real ecosystem. In this pa-

per we re-examine that evidence by constructing global ra-

dial basis models subject to information theoretic parame-

ter constraints. We find that the models exhibit very good

agreement with the data and are able to accurately repro-

duce the qualitative long term dynamical behaviour. The

models also often exhibit “almost” chaotic dynamics, ei-

ther: (a) very long period periodicity, (b) a periodic or-

bit embedded in a dissipative mixing region, or (c) very

long time transient irregular aperiodic dynamics with an

asymptotically periodic orbit. In each case the dynamics

exhibit a very rich range of behaviour and can also pro-

vide a qualitatively accurate deterministic model of the ap-

parently chaotic dynamics when subjected to a delay re-

construction. We conclude that, while the data and these

models are consistent with the hypothesis of chaos in a real

ecosystem, the data may also be adequately explained by

periodic “almost chaotic” behaviour.

1. Introduction

Simple three species ecosystem models (and even two-

dimensional predator-prey maps) have long been known

to potentially exhibit chaotic dynamics [2]. However, di-

rect evidence of chaos in real ecosystems is somewhat lim-

ited, and is typically only found in rather restricted set-

tings [1]. Nonetheless, Maquet, Letellier and Aguirre [5]

recently analysed a data set of annual reported trappings of

Canadian lynx and found that the data were consistent with

low dimensional chaos. They presented a three level food

chain model and global data-based polynomial models, and

found that each was capable of producing chaotic dynamics

— from this they infer that the data are direct evidence for

chaos in a real ecosystem. In this paper, we reanalyse the

same data with our own modelling algorithms and obtain

slightly different results.

The models we obtain are built by fitting a radial basis
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Figure 1: Annual number of Canadian lynx pelts reported

by the Hudson Bay company (1821-1935). Data for the

years 1892 to 1896 is missing and filled in following an ad

hoc procedure (shown in red dotted line). The data set has

been interpolated by a factor of 10 (increasing the amount

of available data while preserving the power spectra). The

original values are shown as open circles.

function network to the available data subject to a mini-

mum description length criterion [6] to determine model

size [4, 8, 10]. While we do obtain chaotic models capable

of reproducing a qualitatively identical attractor to that de-

rived from the data, we also find other richer and potentially

more intriguing dynamical behaviours. In particular, the

models we obtain are very close to the boundary between

periodic dynamics and chaotic pseudo-periodicity. We ob-

tain periodic models, which when driven by very small am-

plitude noise behave in a stable and aperiodic manner. We

obtain periodic models which exhibit transient times signif-

icantly longer that the length of the observed data. We also

obtain periodic orbits with a very long period (again, of the

order of the length of the data) and deterministic chaotic

dynamics capable of reproducing the original dynamics.

2. Chaotic Canadian lynx

This section is organised as follows: Sec. 2.1 introduces

the data and Sec. 2.2 briefly reprises the modelling method-

ology we employ. In Sec. 2.3 we summarise our results and

in the following section we briefly conclude.

2.1. The data

When studying the dynamic behaviour of interacting

populations it is often extremely difficult to get meaningful
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data from field experiments: typically data is needed over

time scales greatly exceeding the average lifetime of the

organism. One classic and widely studied example is the

so-called Nicholson’s blowflies data set [2] where the pop-

ulation of flies on a group of Australian sheep was recorded

over a period of weeks. For larger animals, with longer life-

spans the problem of obtaining useful data becomes more

difficult. Between 1821 and 1935 the number of Cana-

dian lynx furs harvested by the Hudson Bay company is

one such widely studied data set. The data (see Fig. 1)

exhibits approximately periodic oscillations with irregular

fluctuations of the amplitude and a regular period of about

9.6 years.

The original data set consists of 108 data points (the data

for the years from 1892 to 1896 is absent) covering 112

years. For the sake of comparison we repeat the data pre-

processing procedure detailed by Maquet and colleagues

[5]. The data for the missing period is reconstituted using

the closest available match from the remaining available

data and the resultant time series is interpolated to yield a

total of 1131 time series data. The data we use is identical

to that in [5], in the next section we describe our modelling

procedure.

2.2. The model

The scalar time series data xt is subjected to a variable

time delay embedding to attempt to capture the various rel-

evant time scales in the system

zt = (xt, xt−5, xt−10, xt−15, xt−20, xt−25, xt−90) (1)

where the pseudo-period of the system is around 96. The

choice of embedding strategy is both ad hoc and arbi-

trary. Various alternative strategies produced similar re-

sults provided that the embedding lags span the same range

of values. From the vector time series we employ ra-

dial basis models to approximate the function f such that

‖zt+1 − f (xt)‖ is minimised subject to a fixed model size d

f (x) =

d
∑

i=1

λiφi

(

‖x − ci‖

ri

)

(2)

where the weights λi are determined by least-mean-squares

fit, the nonlinear parameters ci and ri are chosen with a

combination of random search and steepest descent, and φi

is one of the following functional forms:
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represent Guassian, “tophat” (a modified Gaussian) or a

Mexican hat wavelet. The remaining parameter d is se-

lected according to the minimum description length princi-

ple. The description length is the computational cost (in

terms of number of bits) required to describe a particu-

lar model and the model prediction errors of that model,
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Figure 2: Three simulations from three models of the Cana-

dian lynx data. In each case, a 1000 point transient has

been neglected. The dynamics (from top to bottom) are de-

terministic chaotic, almost periodic, and exactly periodic.

The working definition we employ for chaos is detailed in

the text. Note that the horizontal axis in this and subsequent

plots is datum number. Due to the interpolation procedure

described in the text 10 data are equivalent to a time span

of one year.

rather than just describing the raw data. The “best” model

is deemed to be the one which affords the shortest descrip-

tion of the data (that is, it achieves the greatest compression

as measured with the smallest value of description length.

For a fixed model size d the model which minimises the

mean-squares prediction error is deemed to be best, but by

selecting model size based on description length we avoid

overfitting without the need for validation data. The idea

behind minimum description length is detailed in [6] and

the application to radial basis and neural network models

which we utilise here is described in [4, 10, 8, 7].

2.3. The results

We repeat the model procedure to produce 100 distinct

models with bounded asymptotic dynamics. Typical dy-

namical behaviour is illustrated in Fig. 2 and a reconstruc-

tion of the underlying attractor (compared to the original

data) is shown in Fig. 3. These trajectories are meant only

to be representative example of the various behaviours ob-

served. From 100 trials, 60% exhibited chaotic dynamics

(that is, bounded and aperiodic during the first 2.5 × 104

iterates). the remainder where split roughly 2 : 1 between

exhibiting a periodic orbit (during the first 2.5×104 iterates)

and a fixed point (convergence to a single value).

The chaotic dynamics exhibited by the chaotic models

was, in each occasion, qualitatively similar. The dynamics

of one such model (chosen randomly) is shown in Fig. 3.
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Figure 3: Reconstruction of the attractor with time delay embedding (left, de = 3 and τ = 10) and differential embedding

(right, xt-vs-xt − xt−1) for a single trajectory from one representative (i.e. chosen only to be chaotic) model (top) and the

original time series data (bottom).

The deterministic attractor clearly reproduces all the quali-

tative features of the original system. Hence, in agreement

with Maquet and colleagues [5] we find that a deterministic

chaotic model produces an explanation consistent with the

observed data.

However, in a minority of cases we observe non-chaotic

dynamics. Occasionally the dynamics also exhibit remark-

ably long transient behaviour. In Fig. 4 we illustrate with

three sections from a single trajectory. The initial 1.25×104

points behave approximately chaotically, afterwards the

dynamics collapses to a periodic orbit. The addition of dy-

namic noise to the system very rapidly returns the system to

the chaotic transient state. Nonetheless, this extremely long

transient illustrates that for this system the distinction be-

tween periodic and chaotic dynamics is rather moot. Even

if we are able to experimentally observe the behaviour of

the lynx population in the absence of noise, the periodic

nature of the system would only be evident after waiting

(in a stationary system) for over 1200 years!

Moreover, the behaviour of the system is extremely sen-

sitive to perturbation by dynamic noise. In the original time

series we observe that the amplitude of the cycle varies

considerably. In particular in the period between 1910 and

1920, and again between 1920 and 1930, the maximum is

very low. It is perhaps natural, but maybe naı̈ve, to guess

that over exploitation is playing a role here. In Fig. 5 we

show a trajectory from a single chaotic model (the same

model is also shown in Fig. 2 and 3). In this case, the tra-

jectory is driven with small amplitude dynamic noise. The

root-mean-square model prediction error for this model

is approximately 132, we drive the system with dynamic

noise with an amplitude of 50 (again, this value is only cho-

sen for the purposes of illustration). From the simulation in

Fig. 5 it is clear that this small perturbation is sufficient to

cause a bountiful harvest or a very lean maximum in the

following decade. Therefore, even twenty years of popu-

lation data (say during the period 1910 to 1930) would not

necessarily provide sufficient information to reliably deter-

mine the behaviour of the following cycle.

3. Conclusion

In this paper we have applied the minimum description

length criterion and an established radial basis modelling

procedure to offer are-examination of evidence for low-

dimensional chaos in the Canadian lynx time series data.

The data has been widely studied and it has recently been

observed that low dimensional polynomial models fit to the

data exhibit chaotic dynamics, and that this may be inter-

preted as evidence for chaos in a natural ecosystem. We

have no strong reason to suppose that polynomial models

are the correct model class for this situation and have there-

fore employed a much broader and more generic class of

nonlinear models.

Nonetheless, from our radial basis models we get results

which appear to support this earlier conclusion: most of

our models do exhibit chaotic dynamics and the agreement

between the chaotic dynamics of our models and the origi-

nal data is exceedingly good (Fig 3). However, we also find

a significant minority of models which are not chaotic, and
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Figure 4: Three sections of trajectory from a simulation

from a single periodic model. Note that the periodic nature

of this simulation is only evident after allowing the simula-

tion to iterate over 1.25 × 104 times.

on many occasions these periodic models exhibit extremely

long transients that could easily be mistaken for numerical

chaos. Of course, we can only conclude that both dynamics

offer a reasonable explanation for the available data. With

models exhibiting transient last over 1000 years it is impos-

sible to say from 113 years of data whether the systems is

actually chaotic or not. However, we emphasise that deter-

ministic chaos, as exemplified in our models does provide

an attractive and parsimonious explanation.

We are currently working on a more detailed descrip-

tion of these models and their behaviour. In particular, we

are comparing traditional dynamic invariants for the mod-

els and the original data [3] as well as applying new com-

plex network based metrics [9].
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