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Abstract—During the last decade, the novel informa-
tion processing scheme of Reservoir Computing (RC)
demonstrated exceptional performance when applied to
challenging computational tasks. What makes RC unique
within neuro-inspired information processing is its suit-
ability for hardware implementation in analog and pho-
tonic systems. After highly successful realizations in de-
lay systems, the scheme is now extended to other types of
photonic networks. We will report on the latest advances
made in the implementation of RC in spatially extended
networks of semiconductor lasers. When successful, such
systems have the potential of all-optical, standalone infor-
mation processing with massive parallelism at 10s of GHz
processing bandwidths.

1. Introduction

The Reservoir Computing (RC) [1] or Liquid state Ma-
chine (LSM) [2] concept was introduced around a decade
ago. It is based on neuro-inspired information processing,
utilizing complex and high-dimensional transient dynam-
ics induced into a complex network of nonlinear nodes by
the to be processed information.

The scheme is illustrated in Fig. 1. Information is in-
jected from input nodes into a network (often random) of
nonlinear nodes, the Reservoir, according to randomly as-
signed injection weights. The information induces complex
and high-dimensional transient responses of the reservoir
nodes. Owing to this dimensionality expansions, theoreti-
cally it is possible to solve any computational problem by
simply creating a linearly weighted sum of the Reservoir’s
node states. Following standard machine learning training
procedures, the linear readout weights are adjusted in or-
der to perform the desired task by using available example
data.

Emulations on standard, electronic von Neumann ma-
chines demonstrated state-of-the-art performance when ap-
plying RC to complex benchmark tests. Among typical
performance evaluations tasks are the classification of spo-
ken digits, the prediction of chaotic timeseries, radar and
wireless communication signal processing and many more.
Such emulations on von Neumann machines, however, sig-
nificantly reduce the appeal of RC: the transient-dynamics
of each network node has to be computed in a serial fash-
ion. Therefore, the overall information processing band-
width is significantly reduced.
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Figure 1: Schematic illustration of the RC concept. In-
formation enters the system via the red input nodes, from
where it is injected into the network of nonlinear nodes
(blue) according to random connections weights. The sys-
tems output (gray nodes) are created via a linearly weighted
sum of the individual reservoir nodes. Using standard
learning procedures, individual weights of the linearly sum
are adjusted in order to perform the desired operation.

Even stronger weighs the impact such an emulation has
on the parallel computation capability of RC. The theoreti-
cal framework of RC makes the concept inherently parallel,
allowing for massive parallelism in information processing.
When implementing the scheme in a single core, serial von
Neumann processor, this possibility is lost. Only imple-
mentations of RC in nonlinear networks allows for full ex-
ploitation of the concepts merits.

2. Harware implementations of RC

Essential to RC is a significant simplification when com-
pared to previous machine-learning algorithms. Conse-
quently, hardware implementations in physical complex
networks became realistic. Utilizing the high-dimensional
space of delay coupled systems, RC was demonstrated in
electronic [3], opto-electronics [4, 5] and all-optical [6, 8]
systems.
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These hardware implementations were significant for
the success of the field. Following the delay-approach,
it is possible to define a ring-like network in which most
parameters can be controlled by having access to a sin-
gle hardware element only. As such, experimental condi-
tions can be accurately controlled and fundamental prop-
erties of hardware-implemented RC could be evaluated for
the first time. Furthermore, the implementation’s simplic-
ity allowed to implement neuro-inspired information pro-
cessing in photonic hardware while profiting from pho-
tonics’ high dynamical bandwidths [7]. Demonstrating
the same computational concept either using the nonlin-
earity of a simple transistor, a Mach-Zehnder modulator
or photonic-semiconductor devices (SOA, laser diode) also
proved the versatility of the concept. While numerical em-
ulations were largely restricted to threshold nonlinearities,
e.g. piecewise step-function, these experiments demon-
strated that the exact type of nonlinearity appears to play
a minor role in the implementation.

3. Reservoir Computing based on spatially extended
all-optical networks

An important step for the field is extending hardware im-
plementations of RC to spatially extended networks. Such
systems will allow for fundamental extensions of the con-
cept, however they come with significant challenges. As
can be seen from Fig. 1, the network of nonlinear elements
features a random connectivity, something which the cir-
cular networks of delay elements can only approximate.
Furthermore, delay-implemented reservoirs’ bandwidth is
inherently reduced by the number of emulated nodes, pre-
senting a significant reduction of processing bandwidth for
the typical Reservoir of a few tens to hundreds of nodes.

A schematic illustration of our experimental setup is
shown in Fig. 2. The network of nonlinear elements
is based on an array of Vertical-Cavity Surface-Emitting
lasers (VCSELs). Taking profit of the accurate periodic-
ity of such semiconductor devices, an network of lasers
is formed optically by utilizing the diffraction-pattern of a
Diffractive-Optical-Element (DOE). Upon back-reflection
from the SLM (therefore passing the DOE twice), the DOE
creates diffractive orders of each laser’s emission, which
are imaged on top of the 24 neighboring lasers for each
laser. Therefore, in our system we realized a network with
nearest and next-nearest neighbor coupling.

Advantageous to multi-hardware node systems is that in-
jection and readout procedures do not require a dynamic
modulation addressing individual nodes. In our spatially
extended optical system, realizing a heterogeneous injec-
tion of information into different Reservoir nodes is pro-
vided by the imaging properties in optics, combined with
the naturally occurring diversity of the individual hardware
nodes. Therefore, each node will react differently to the in-
jected information, establishing the dimension-expansion
required by the machine-learning concept, Information is
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Figure 2: Schematic illustration of an all-optical imple-
mentation of RC in an array of lasers. Using a diffractive-
optical element (DOE) and the reflection of a spatial-light-
modulator (SLM), a network is formed between the lasers
of a VCSEL array. A Rochon prism creates two images
of the network on the SLM, were the lower image is uti-
lized for implementing the Reservoirs readout weights. Us-
ing a Kohler-integrator, a spatial integration of the linearly
scaled network state is created, realizing an all-optical clas-
sifier. All-optical information injection is realized via an
external tuneable laser (TLS), which is intensity modulated
via a Mach-Zehnder (MZ) modulator.

encoded in the optical injection using a Mach-Zehnder
(MZ) intensity modulator.

Using a Rochon-prism, a second image of the array is
created on the SLM. The gray-scale of the SLM is then
utilized for applying readout-weights to the individual net-
work nodes. A standard beam homogenizer, a Kohler-
integrator, creates a small area (= 50 X 50 um), in which the
optical intensity of the array, scaled by the readout wights,
is integrated.

4. Properties of the all-optical, multi-node reservoir

Based on our experimental setup, we start to evaluate
the boundary conditions for RC. The first essential step is
the successful formation of the Reservoir. In Fig. 3 a),
we show the Pl-characteristics of our 8x8 laser array. A
strong indication for self-feedback and coupling to other
lasers is the reduction of the lasing threshold. This feature
can be identified in the panels of Fig. 3 b). Panels in Fig.
3 b) show the PI-characteristics for lasers (5,4), (5,5) and
(5,6) for the solitary devices (red) or when implemented
in the network (black). Here, we follow the notation of
(Row, Column) for addressing individual laser diodes. One
can identify a general trend: laser located in the center of
the network experience a significantly larger threshold re-
duction than lasers located at its fringes. This is caused by
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Figure 3: Fundamental characterization of the laser net-
work. Panel a) shows the individual PI-curves for all lasers
of the 8x8 array. Panel b) shows the threshold reduction of
selected lasers caused by the coupling in the network.

spherical aberrations present in our imaging system. There-
fore, it is not a fundamental limitation and the problem can
be resolved by simple means like a tailored imaging lens or
a modified resonator structure.

Information injection into the Reservoir is the next re-
quirement for information processing. In our injection
scheme, we lock the network lasers to the injection laser.
By selecting the injection’s polarization orthogonal to the
detection, we obtain an inverted locking scheme. It al-
lows us to correlate intensity modulations in the detection
directly to the response of the network, ruling out strong
crosstalk from the injection source. Low crosstalk between
injection and the classifier is critical since it lacks nonlin-
earity and hence can not aid the information processing.
Here, we achieve a modulation amplitude between 50 and
80 % of the Reservoir’s output power. The information in-
jection rate is determined by the time-delay introduced by
the optical coupling of the individual lasers, which in our
setup amounts to ~1.2 ns.

The final step in the computation is the application of a
scaling factor to the individual reservoir nodes and to detect
the optical response of the system. Based on the SLM, we
can scale the optical intensity of each Reservoir node with
a contrast between 50 and 100:1.

Our setup therefore provides all fundamental building-
blocks for an all optical Reservoir Computer. All-optical
data injection, the optical network of lasers and the opti-
cal classifier are all implemented in hardware. Our system
therefore has significant potential for being the first RC
including all essential parts and components in hardware.
Such a system would be able to process complex data at
high speed, in our case ~700 MHz, all optically. Small
modifications to the setup would also allow for parallel in-

formation processing.

Finally, it is important to mention that the current scheme
exclusively relies on device-inherent properties. There-
fore, no part of the setup would require dynamic address-
ing or modulation. All sections are exclusively operated
with DC-signals, possibly allowing for highly-integrated
and hardware-efficient implementations in the future.

As the final step, we will report on the progress of im-
plementing RC in the presented optical system.

Acknowledgments

The authors would like to thank the organizer of the spe-
cial session organizer. The authors would like to acknowl-
edge funding from the EC Marie-Curie program, project
acronym NOVALIS, Grups Competitius and the MICINN
(Spain), project TRIPHOP (TEC2012-36335).

References

[1] H. Jaeger, H. Haas, “Harnessing nonlinearity predict-
ing chaotic systems and saving energy in wireless com-
munication,” Science, vol. 5667, pp.78-80, 2004.

[2] W. Maass, T. Natschldger, H. Markram, “Real-time
computing without stable states: a new framework for
neural computation based on perturbations,” Neural
computation, vol.11, pp.2531-2560, 2002.

[3] L. Appeltant, M. C. Soriano, G. Van Der Sande, J.
Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.
R. Mirasso, 1. Fischer, “Information processing using
a single dynamical node as complex system,” Nature
communications, vol.2, pp.468, 2011.

[4] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant,
J. M. Gutierrez, L. Pesquera, C. R. Mirasso, 1. Fis-
cher, “Photonic information processing beyond Turing:
an optoelectronic implementation of reservoir comput-
ing,” Optics express, vol.3, pp.3241-3249, 2012.

[5] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B.
Schrauwen, W. Haelterman, S. Massar, “Optoelec-
tronic reservoir computing,” Scientific reports, vol.2,
pp-287, 2012.

[6] D. Brunner, M. C. Soriano, C. R. Mirasso, I. Fischer,
“Parallel photonic information processing at gigabyte
per second data rates using transient states,” Nature
communications vol.4, 1364, 2013.

[7] D. Brunner, M. C. Soriano, I. Fischer, “High-Speed
Optical Vector and Matrix Operations Using a Semi-
conductor Laser,” IEEE Photonics Technology Letters,
vol.25,pp.1680-1683, 2013.

[8] F. Duport, B. Schneider, A. Smerieri, M. Haelterman,
S. Massar, “All-optical reservoir computing,” Optics
express, vol.20, 2012.

- 579 -



