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Abstract—Synchronization in chaotic systems has
been of much importance in the field of nonlinear dy-
namics, not only for mathematical aspects but also
for their applications such as computation, etc. In
this paper, we apply chaotic synchronization and de-
synchronization to a token-based computational archi-
tecture in which the tokens are driven by chaotic fluc-
tuations. It is expected (though not strictly proved
here) that the resulting scheme is computationally
universal, since a similar scheme, driven by stochas-
tic fluctuations, also is. Simulations confirm that the
chaotic scheme behaves in similar ways as the equiva-
lent token-based stochastic scheme.

1. Introduction

Chaotically fluctuating orbits sensitively depend on
initial conditions and thus it seems difficult to control
two identical chaotic systems such that they become
synchronized. However, it has been shown that chaotic
dynamical systems are controllable due to their in-
herent determinism, and that, moreover, two or more
chaotic elements are synchronizable (reviewed in [1]).
Since chaotic dynamics provides a rich dynamical be-
havior, synchronization phenomena in chaotic systems
could be applied to computation [2] for instance.

The concept to exploit stochastic fluctuation has
been proposed recently in applications ranging from
computation [3] to secure communication [4]. Among
these stochasticity-based computing schemes, a token-
based circuit driven by stochastic noise, called Brown-
ian circuit, has been proposed that is computationally
universal [5, 6]. The Brownian circuits are searched by
noise-driven tokens, whereas computational operations
are achieved as the outcome of this search process.

Since thermal noise can be used as a (freely avail-
able) noise source, Brownian circuits have an interest-
ing potential for implementations at nanometer scales
[3]. There is a catch, though, and that is that stochas-
tic search is less efficient than conventional schemes,
even though some local optimization of search effi-
ciency can be accomplished through the placement
of ratchets, which are diode-like devices that restrict

search to one direction. Another way to increase effi-
ciency of search is to take control of the fluctuations,
in a way that preserves a token’s ability to explore
the state space inside a circuitry, while decreasing the
number of trials that fail to carry the computation for-
ward. The use of chaotic fluctuations is a promising
avenue in this context, given that chaotic search has
been shown to be more efficient than stochastic search
for some optimization problems [7] and for solving a
maze [8].

In this paper, we consider the above mentioned
token-based circuits in terms of deterministic chaotic
dynamics. Towards investigation of the efficiency of
the circuits by chaos, as a first step, we show the possi-
bility to implement the token-based circuits by chaotic
dynamics, particularly by chaotic synchronization.

2. Brownian circuits

Brownian circuits are circuits in which signals are
encoded by tokens that are allowed to fluctuate on
wires [5, 6]. Like in traditional logic circuits, there is
a set of primitive modules for Brownian circuits from
which any arbitrary circuit can be constructed. Called
Brownian Circuit Primitives (BCPs), this set is quite
simple, as compared to conventional token-based cir-
cuits. This simplicity is due to the power inherent
in the stochastic search process that tokens (inadver-
tently) conduct.

Fig. 1(a) shows the Hub primitive, which is nothing
more than three wires knot together at one point. The
Hub can contain at most one token at a time on its
wires, and this token is allowed to fluctuate between
the three wires. Fig. 1(b) shows the CJoin primitive,
which is equipped with switching ability: a token on
a wire of a Cjoin can only be switched when another
token on the opposite wire is present, and as the re-
sult of a switching event both tokens are transferred
to the CJoin’s other pair of (orthogonal) wires. The
tokens are allowed to fluctuate, like with tokens on
the wires of a Hub, and the CJoin can switch forward
and backward. Fig. 1(c) shows an example of a simple
Brownian circuit, which is analyzed in more detail in
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Figure 1: (a) Hub primitive, and (b) CJoin primitive
and their possible transitions. The labels 1, 2, and 3 on
the wires denote states described in detail in Section 3.
(c) Brownian circuit consisting of one CJoin connected
to two Hubs.

this paper.

3. Root Module by dynamical systems

To simplify the model of the Brownian circuits prim-
itives, we unify their representation. That is, the Hub
and the CJoin are represented by a single Root mod-
ule, the behavior of which is defined by a nonlinear dy-
namical system. The Root module has 4 wires. These
wires may contain tokens in certain combinations, and
these combinations encode the presence or absence of
tokens on certain wires of a Hub or a CJoin. The
wires of a Root module are labeled by the numbers
n = 0, 1, 2, 3. Each wire is represented by two un-
coupled oscillators, called the x-oscillator and the y-
oscillator, which are denoted by x(n) and y(n), whereby
n is the label of the wire. These oscillators play an
important role in the representation of tokens. De-
pending on whether two oscillators are synchronized or
de-synchronized, there will be no or one token, respec-
tively, on the corresponding wire. How are the oscilla-
tors implemented? We use an autonomous continuous-
time chaotic system, and to this end we need at least
3-dimensions per oscillator because of the Poincaré-
Bendixson theorem. We associate wire n with m-
dimensional oscillator X(n), with m ≥ 2× 3 = 6. The
x- and y-oscillator are extracted from X(n) through
the projection operators Px,Py.

Since the Root module has four wires, we use four
pairs of uncoupled 3-dimensional nonlinear dynamical
systems to represent it. Each pair is driven by the rest
of the pairs through coupling constants. The dynamics
is described by the following equation.

Ẋ(n) = F(X(n),a) + g(PxX
(m),PyX

(m), α(n,m)), (1)

where X(n), n = 0, 1, 2, 3, are vectors, and X
(n)
i , i =

0, 1, . . . , 5, are the elements. The function F governs
the basic dynamics of the uncoupled system. In this
paper, the basic dynamics follows the Lorentz sys-
tem: Ẋ0,3 = −σ(X0,3 − X1,4), Ẋ1,4 = −X0,3(X2,5 −

r) − X1,4, Ẋ2,5 = X0,3X1,4 − bX2,5 with the pa-
rameters σ = 10, r = 8/3, b = 28. The func-
tion g is a coupling function with the coupling
constant α(n,m), m = 0, 1, 2, 3, which is from the
wire m to n. In particular, if i = 1, 4, then
gi(x(m), y(m), α(n,m)) =

∑
m α(n,m)|x(m)−y(m)|. Oth-

erwise gi(x(m), y(m), α(n,m)) = 0. Px and Py are pro-
jections on X0 and X3, respectively.

Next, we explain how to encode the Hub and the
CJoin by the Root module (RM). The encodings of
the token states in the Hub and the CJoin are summa-
rized in Table 1, together with the coupling constants
conditions of the RM, which are shown at the right
side of the table. The state of a Hub or a CJoin thus
corresponds with a set of coupling constants satisfy-
ing a certain condition. Changing a condition for a
set of coupling constants results in a change in which
oscillators in a Root module are synchronized or de-
synchronized, and this in turn effects a change in a
Hub or a CJoin.

Entry no. 1 in Table 1 refers to the absence of tokens
on any wire of a Hub or a CJoin. This is encoded
as the presence of a token on the wire no. 0 of the
RM, so the two oscillators x(0) and y(0) will be de-
synchronized and the other three pairs of oscillators
will be synchronized.

Entry no. 2 in Table 1 refers to the presence of one
token on one of the wires of a Hub. This corresponds to
the de-synchronization of the oscillator pair associated
with one of the three wires n = 1, 2, 3 in the Root
module, whereas the other pairs of oscillators will be
synchronized.

Entries no. 3 and 4 in the Table refer to the pres-
ence of one token on the left, resp., right input wire
of a CJoin, and they follow the same philosophy of
synchronization and de-synchronization. Once a sec-
ond token is input to a CJoin, we enter in a state
described by entry no. 5 of Table 1. This is a transi-
tional state, which is entered only temporarily, before
a CJoin enters in the state described by entry no. 6.
The latter state allows the tokens at the CJoin to fluc-
tuate pair-wise between the input-side of the CJoin
and its output side.

4. Connecting the root modules

A Brownian circuit is constructed by connecting
BCPs to each other according to a desired circuit
topology. This requires that dynamical systems corre-
sponding to individual RMs be combined into a larger,
more global, dynamic system. A wire is divided in
two branches, one branch for each of the two modules
at both ends of the wire. To smoothly connect two
branches, their states need to be made compatible.
Two branches connected to each other can contain at
most one token at a time (multi-token prohibition), be-
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Table 1: Encoding of the Hub and the CJoin by the
Root module (RM). The conditions governing param-
eter α(n,m) are shown in the right-most columun.

No. RM BCPs Description

1
sync

sync

s
y
n
c

d
e
-
s
y
n
c

0
1 3

2

No token:
α(0,1) � α(1,0),
α(0,3) � α(3,0),
α(0,2) � α(2,0).

2
de-sync

sync

s
y
n
c

s
y
n
c

0
1 3

2

1 token: At any
wires in Hub,
α(1,0) < α(0,1).

3
de-sync

sync

s
y
n
c

s
y
n
c

0
1 3

2

1 token: At Input
wire-1 in CJoin,
α(1,3) � α(3,1),
α(1,0) � α(0,1),
α(1,2) � α(2,1).

4
sync

sync

d
e
-
s
y
n
c

s
y
n
c

0
1 3

2

1 token: At Input
wire-2 in CJoin,
α(3,1) � α(1,3),
α(2,1) � α(1,2),
α(2,3) � α(3,2).

5

de-sync

sync

s
y
n
c

0
1 3

2

d
e
-
s
y
n
c

2 Tokens: At In-
put wires in CJoin,
α(1,3) � α(3,1),
α(1,0) � α(0,1),
α(2,0) � α(0,2),
α(2,3) � α(3,2),
α(1,2) = α(2,1) = 0,.

6
de-sync

sync

s
y
n
c

0
1 3

2

d
e
-
s
y
n
c

sync

de-sync

s
y
n
c

s
y
n
c

0
1 3

2

2 Tokens: At
Input or Output-
wires in CJoin,
α(3,1) < α(1,3),
α(1,0) � α(0,1),
α(2,0) � α(0,2),
α(3,2) < α(2,3),
α(1,2) = α(2,1) = 0,.

cause there can be only one token on a wire at a time.
The implementation of the multi-token prohibition re-
quires a closer look at the synchronizing behavior of
pairs of oscillators. Given that a token is represented
as the de-synchronization of two oscillators, the dy-
namics of these oscillators needs to be used to syn-
chronize the other pairs of oscillators that represent
branches at which no tokens are allowed to appear
due to the multi-token prohibition. It has been shown
that uncoupled Lorenz systems can be synchronized by
common white Gaussian noise [9], and by interpreting
our signals from the de-synchronized oscillators as a
common noise source, we can use a similar mechanism
to synchronize other pairs of oscillators.

The multi-token prohibition not only applies to two
branches connected to each other, but also to branches
further away. In the case of Fig. 1(c) the left Hub
contains a token on one of its branches, and even if
the branch containing the token is not connected to

the CJoin, there can be no token on the CJoin’s branch
connected to the Hub. The reason is that a token on
a wire of the Hub can eventually move to the branch
of the CJoin, and this would violate the multi-token
prohibition.

To connect the RMs into Brownian circuits such
that the multi-token prohibition is satisfied, it is nec-
essary to switch adaptively between the coding states
of the module. This is implemented by changing the
coupling constants according to the conditions in the
right column of Table 1. To add this adaptive func-
tionality to the RMs, we use so-called Angel operators,
which are functions that observe branches that should
satisfy the multi-token prohibition. The Angel opera-
tors conduct their tasks on a local scale, such as not
to inadvertently pick up information on the behavior
of tokens at more remote locations.

The multi-token prohibition is implemented by the
following equation.

α(n,m) = β(n,m) + ∆(n,m) ·G(Y) (2)

where Y ∈ {0, 1}NB is a token indicator vector de-
termined by Angel operator, NB is the number of
branches in a BCP. The element of Y, denoted by
Yj , represents the information from the branch-j of a
Hub (j = 1, 2, 3) or a CJoin (j = 1, 2, 3, 4). If there
is a token in the observed (connected) branch, Yj goes
to 1, otherwise Yj = 0. The constants β(n,m) rep-
resent default states of RMs. The ∆(n,m) ∈ RM is
a constant vector that determines a kind of learning
rate by which the variables α can change in a cer-
tain time interval. This constant vector is set such
that the time scale of the dynamics of equation (2) is
slower than the dynamics X(n) of the RMs. Failing
to set this constant vector appropriately would cause
the dynamics to become unstable, due to inadvertent
feed-back effects. The set-theoretical (Boolean) func-
tion G : RNB → RM is explained through an example
in the next section. The second term in the RHS of
equation (2) is an inner product of vectors.

5. Simulations

To exemplify the coding of Brownian circuits by
the connected Root modules, we simulate the circuit
in Fig. 1(c). First, we define equations that indi-
cate the presence of tokens. For the left and right
Hub, respectively, we use the variables Y1 and Y2 as
token indicators. Y1 = f(|X(1)

0 − X
(1)
3 | + |X(3)

0 −
X

(3)
3 |), Y2 = f(|X(2)

0 −X(2)
3 |+|X(3)

0 −X(3)
3 |), The func-

tion f(·) is a sigmoidal function for which f(x, a) =
(1 + exp(−1000(x − a)))−1, whereby a is a threshold
parameter. So, when Y1 = 1 there is a token in one
of the branches of the left Hub. The token indica-
tors are used as input to the Angel operators. An
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Angel operator at the point connecting a Hub to the
CJoin observes not only tokens on the input wires of
the CJoin, but also tokens on the output wires of the
CJoin, because tokens on these output wires can move
back through the CJoin to its input wires, and from
there move back to the Hub.

The indicators for the left resp. right side of the
CJoin are Y1 and Y2, which are defined as Yj =
f(|X(1)j

0 −X(1)j
3 |+ |X(2)j

0 −X(2)j
3 |+ |X(3)j

0 −X(3)j
3 |),

An angel operator connecting the CJoin to a Hub ob-
serves all the branches of the Hub, because a token on
any of them can move to the CJoin on a short notice.

The function G is basically composed of zero and
identity components for the Hub, but G can also be
a set theoretical operator of Yj for the CJoin. This is
because a CJoin can assume many token states such
as the ones in entries no. 0, 3, 4, 5, 6 in Table 1.
The many state transitions that are possible require
not only simple binary values of Yj = 0, 1, but also
restrictions on combinations of different Yj ’s. These
are defined by two additional functions. G1(Y1, Y2) =√
Y1 · Y2, G2(Y1, Y2) = f2(Y1 + Y2, a −N + 2), where

f2(x, y, a) = 1 − f(x + y, a − N + 2) with N = 0, 1, 2
depending on the number of tokens at the CJoin and
the two Hubs.
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Figure 2: Token representation by de-synchronization
in the Root modules for the Brownian circuit in Fig.
1(c). (a) Case with one token in the left side of the
circuit. (b) Case with two tokens in both the left and
right sides of the circuits. In both cases the panels in
the graphs have the following meanings (from top to
bottom): Output, Input-2, Input-1, Left Hub, Right
Hub. For the Hubs the synchronization states are su-
perimposed.

The default relations for the coupling constants
of the two Hubs are: β(1,0) < β(0,1), β(0,3) =
β(3,0), β(0,2) = β(2,0). The β’s for other pairs (n,m)
and (m,n) are the same. The default relations for
the coupling constants of the CJoin are: β(1,0) <
β(0,1), β(1,2) = β(2,1), β(2,3) � β(3,2), β(0,3) =
β(3,0), β(2,0) < β(0,2), β(1,3) � β(3,1).

In Fig. 2, we show the token moving in
the circuit in Fig. 1(c) represented by de-

synchronizatoin/synchronization in the wires of the
Root modules. The vertical axes represent X(n)

0 −X(n)
3

in the wires for the two Hubs and the Cjoin. So, a
non-zero value means de-synchronization and thus the
presence of a token. In Fig 2(a), where there is one
token in the left side of the circuit, no significant de-
synchronization occurs in the Input-2 and the Out-
put branches of Cjoin and the right Hub. A token is
moving between the left Hub and the Input-1 branch
of the CJoin. For (b), there are two tokens in both
sides of the circuit just like in Fig 1(c). Token transi-
tions in the circuits can be observed through the de-
synchronizations of the wires. Note that the token
transitions in the figures follow the multi-token prohi-
bition.

6. Discussion and Conclusion

Brownian circuits have been implemented by chaotic
synchronization, whereby the presence and movement
of tokens are represented by de-synchronized chaotic
oscillators. Since the fluctuation used this model fol-
lows deterministic rule, we obtain increased control
over the dynamics, thus potentially allowing faster
system performance. Construction of larger circuits
by the proposed scheme will require extension of the
multi-token prohibition rule and the Angel operator,
such that locality of relations is preserved as much
as possible, because that will allow the connection of
modules to each other without considerations of the
dynamics inside each module—a key requirement for
the modular construction of circuits.

This work is partly supported by Aihara Complexity
Modeling Project, ERATO, JST.
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