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Abstract—Recently, intensive efforts have been made
to transform time series into networks since the networks
constructed from time series can provide complementary
information to that of the phase space of different dynam-
ical systems. The recurrence-based phase space network,
which is built by linking k nearest neighbors of every point
in the reconstructed phase space, can be used to specify
different types of dynamics in terms of the motif ranking.
Unlike network size with different scaling exponents and
the degree distribution mimics the behavior of a discrete
Gaussian distribution with different bandwidths from peri-
odic to chaotic Rössler systems. These results indicate that
network statistics may offer deeper understanding about the
organization of the points in phase space. Finally, local
network properties such as the vertex degree, the cluster-
ing coefficients and betweenness centrality are found to be
sensitive to local stabilities of the obits and contain com-
plementary information.

1. Introduction

Recently, a framework for analyzing time series by con-
structing associated complex networks has attracted re-
search interests [1–7]. Representing the time series through
a corresponding network provides new methods to explore
the properties of time series based on complex network
theory which may lead to deep insights into the dynami-
cal processes of a system. Many methods for transforming
time series into networks have been suggested. A natural
way for building networks from time series is by adding
links between segments with some similarities, based on
which, recurrence networks [3], cycle networks [2], cor-
relation networks [5, 6] have been proposed. The visibil-
ity graph suggested by Lacasa et al. [4] which maps each
points of the time series to nodes and link two nodes if a
partial convexity constraint is fulfilled, is one of notable
alternative methods.

Many research efforts have been devoted to recurrence
networks based on the concept of recurrences in the phase
space. Traditionally, to construct a recurrence network fol-
lowing the idea of a recurrence plot by Eckmann et al. [8],
the time series is mapping into a set of points in the embed-
ded phase space. Each point represents a node of the net-
work, and two nodes are linked together when their phase

space distance are smaller than a selected threshold ε. By
choosing an appropriate ε, the local phase space proper-
ties can be best preserved [7]. In 2008, Xu et al. sug-
gested constructing networks linking each node with its
k nearest neighbors [1] in the reconstructed phase space.
At the microscopic level, the building blocks of the com-
plex networks such as the network motifs reflect differ-
ent local structure properties [9]. Based on the occurrence
frequencies of the motif patterns, a so-called superfamily
phenomenon is observed which can distinguish time series
with different dynamics.

In this paper, we quantify these recurrence-based phase
space networks (using the k neighbor method of [1]) via
the standard topological statistics besides the motif rank-
ing. Such global and local statistics can provide new infor-
mation about the phase space geometry within time series.

2. Quantitative assessment of recurrence-based phase
space networks

When transforming time series into a recurrence-based
phase space network representation, one node in the phase
space is connected to its k nearest neighbors and the asso-
ciated network inherits structure of the distinct local phase
space properties from different dynamical systems. The
key question is what information is contained inside the
network representation. When characterizing the structure
of a complex network, we intend to look at its global prop-
erties such as the average path length, the global clustering
coefficient and the degree distribution. Starting from a low
periodic time series, the associated network is regular as
the points arrange orderly round an orbit in the phase space.
The network forms a big loop shape and its size increases
proportionately to the number of points of the embedded
data. If we add noise to the data, the dimension of the dy-
namics increases while the homogenous distribution of the
points remain unchanged. we still get the loop structure but
the diameter of the network decreases For chaotic time se-
ries, the reconstructed phase space becomes heterogenous
and may have some fractal properties and thus the associ-
ating network generates heterogeneity.
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Figure 1: (Upper) Dependence of the average path length
L(N) on the length N of the time series for Rössler sys-
tem of different dynamical types. (Middle) Best fitting
models are L(N) = 0.085N0.96 and L(N) = 0.059N1.00

for low periodic Rössler of period 2 and period 3 respec-
tively. (Lower) Best fitting models are L(N) = 0.48N0.67

and L(N) = 0.78N0.43 for chaotic Rössler with c = 9 and
c = 18 respectively.

2.1. Global network properties

To investigate the distinction among different dynamical
types in more detail, we study the average path length as a
function of the time series length. We make use of the data
from the x component of the Rössler system x′ = −(y + z),
y′ = x + ay, z′ = b + (x − c)z with a = 0.1 and b = 0.1.
By tuning the parameter c, low periodic, high periodic and
chaotic data can be obtained. The data is mapping into a
space of dimension de = 10 with the time delay τ which
is chosen to be the first minimum of the mutual informa-
tion. Each point in the embedded space represents a node
and we link it with its 4 nearest neighborhoods to form the
recurrence-based phase space network with the mean de-
grees equal to 8. Thus, the number of nodes of the network
equals to N − τ · de where N is the time series length.

Figure 1 shows how the average path length of the phase
space network change with respect to the increasing length
of the time series. Note that the average path length can be
affected by the choice of initial point of the flow data, so
the desired results are taken as an average over several net-
works from different segments of the same parameter. We
find average path length L(N) scales with N with different
scaling exponents for low periodic and chaotic Rössler sys-
tems. The average path length L(N) increases linearly with
time series lengths N for low periodic time series with pe-
riods 2 and 3, but exponentially for chaotic Rössler. For
high periodic cases, we find transient behavior when the
size N is small because the corresponding time series can
be too short to cover enough periodic information. More-
over, the slopes for average path length L(N) are larger than
the two chaotic Rössler cases but smaller than the low peri-
odic cases due to the interactions between two nearby orbits
appear in the phase space.
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Figure 2: Dependence of the global clustering coefficient
C(N) on the length N of the time series.

We also study other global properties including the clus-
tering coefficient and the degree distribution for Rössler
systems of different dynamical type as shown in Figs. 2 and
3. The global clustering is closely related to motif ranking.
As motif F that denotes a fully-connected subgraph of or-
der 4 indicates strong mutual coupling between nodes, we
may expect that the clustering coefficient for the periodic
Rössler will be larger than the chaotic Rössler, because mo-
tif F occurs more frequently in periodic phase space net-
work rather than network from chaotic data of the same
Rössler system as mentioned in Ref. [1]. From Fig. 2 we
can see that the clustering coefficients are rather stable with
respect to an increasing N and converges to around 0.68 for
low periodic with period = 2, 3 as network size increases.
Similar behavior can be found in the chaotic Rössler with
c = 18. The clustering coefficients are also stable but the
curve converges to a lower value around 0.58. In compari-
son, significant transient effect can be found in the remain-
ing three cases. The curve for the chaotic Rössler with
c = 9 first rises to a same high level as the low periodic
cases for the N between 1000 and 2000. Then, it turns
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down and finally converges to a low level as the chaotic
case. The curve for Rössler of period 6 goes up and down
and finally goes to the same value as low periodic cases.
Although the value of clustering coefficient for Rössler of
period 8 is closer to that of the chaotic cases, we may in-
fer that, as the size of the network increases, the curve will
finally come up to the low periodic values.
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Figure 3: The degree distribution for the Rössler system
of different dynamical types.

Figure 3 shows the average degree distributions for net-
works of several realizations associated with 10000 points
of the Rössler data with different dynamics. We find that
the average degree distribution mimics the behavior of dis-
crete Gaussian distribution for networks from the Rössler
system in different dynamical regimes. The degree at
which p(k) reaches its maximum is 8, which is the average
degree of the network. The peak values of p(k) for net-
works generated from periodic data are all above 0.3 and
the bandwidths of the Gaussian distribution are rather nar-
row, indicating that the networks are homogenous. In con-
trast, for chaotic Rössler, p(k) will be lower than 0.3 and
the bandwidths of the Gaussian distributions are wider.

2.2. Local network properties

Figure 4: Color coded representation of vertex degree on
the attractor for chaotic Rössler with c = 18.

Rather than the global properties, we also examine local
vertex properties which can provide more detailed infor-
mation which is otherwise buried in the geometry of the at-
tractor. The first global property we study is the local vertex
degree which is the number of neighbors of a given vertex v
in the network. The degree of a vertex for the traditional re-
currence networks which based on an appropriate choice ε
reflects exactly the local recurrence rate. When it comes to
phase space network, we should recall that the average de-
grees are 8 due to the distinctive construction methods we
use to obtain the network. Thus the local degrees depend
closely on the spatial filling of the phase space attractor. On
the one hand, in the region where the density of the phase
space is homogenous, the corresponding structures of the
network retain the homogeneity from the attractor and lo-
cal degrees for the vertices will be around 8. That is, every
point in these regions is connected to its 4 nearest neigh-
bors and at the same time gains around 4 extra links from
points which take it as a nearest neighbor. One the other
hand, if points locate in the regions where there are sig-
nificant changes in the phase space density, some of these
points may gain more than 4 extra links besides its 4 nom-
inal nearest neighbors, resulting in the lack of neighbors
for some other points in the same region. These regions
will have a heterogeneous degree distribution. Long peri-
odic signals follow a uniform distribution of low dimension
while the trajectories of chaotic signals tend to be trapped
in the vicinity of the unstable periodic obits that lead to
density changes in the phase space. One may refer to color
coded representation of vertex degree on the attractor for
chaotic Rössler with c = 18 in Fig. 4 for details. Also,
we can address the different bandwidths in Fig. 3 which
shows the degree distribution for the Rössler of different
dynamical types. Since more heterogeneity is generated by
the phase space of chaotic Rössler, the bandwidths will be
wider.

Figure 5: Color coded representation of vertex clustering
coefficient on the attractor for chaotic Rössler with c =
18.

The second property we study is the clustering coeffi-
cient of a specific vertex which quantifies the relative den-
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sity of connections between its neighbors and thus mea-
sures the network in a relative larger scale compared to the
local degree. Figure 5 shows color representation of vertex
clustering coefficient on the attractor for the chaotic Rössler
with c = 18, from which we observe the heterogeneously
distributed local clustering coefficients. As the heterogene-
ity comes from the heterogenous distribution in the density
of the phase space, one might expect that a node in the
dense region of the phase space will naturally have a larger
clustering coefficient and vice versa. However, it is shown
in Fig. 5 that the values of clustering coefficient for some
nodes locate in the dense region of the phase space could
be small while the values for nodes locate the boundary
region of the attractor could be large. In a homogenously
filled phase space region, things become simpler and we
can see points with relatively uniform and higher cluster-
ing coefficients. However, when it comes to a region with
large density fluctuations, we have to consider the interac-
tions between several orbits which are close to each other.
A strong connectivity between neighbors of the same point
could be obtained only if its neighbors tend to lie in differ-
ent orbits, because we have excluded links within the same
orbit when constructing the phase space networks. We can
conclude that the local clustering coefficient contains the
complexity of the interaction between orbits in the phase
space and can provide complementary information of the
system.

Figure 6: Color coded representation of logarithm of ver-
tex betweenness centrility, log(bv + 1),on the attractor for
the chaotic Rössler with c = 18.

The third property we study is the betweenness central-
ity of a specific vertex which quantifies the relative shortest
path length pass through the vertex and thus it is more com-
plicated because it measures the network in an even larger
scale compared to the clustering coefficient and the local
degree. What we are most interested in are the points with
a large betweenness centrality which are of importance for
the many shortest paths on the network. As shown in Fig. 6,
the nodes with high betweenness centrality may correspond
to the region with low phase space density between such
regions because of an increasing number of shortest path

between such regions. For vertices with large degree in the
dense region of the phase space close to the unstable pe-
riodic obits, low values of betweenness centrality can be
found. A similar conclusion has been drawn for the tradi-
tional recurrence networks [7].

3. Conclusions

In this paper, we apply standard complex network mea-
sures to recurrence-based phase space network constructed
by linking every point with its k nearest neighbors in re-
constructed phase space. In particular, global properties
such as average path length, the global clustering coeffi-
cients and degree distribution can be used to distinguish
system of different dynamical types. Local degrees, clus-
tering coefficients and betweenness centrality reveal infor-
mation on the spatial fillings of the phase space and are
close to dynamical invariants such as the unstable periodic
obits. The specific vertex properties can provide more de-
tailed information about the local attractor geometry in the
phase space.
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