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Abstract—Pre-eclampsia in pregnancy is a serious dis-
ease with high risk of fetal and maternal morbidity. The
usual positive predictive value is 20–30%. Including car-
diovascular variability, it has been recently shown that this
predictive power can be improved.

Here we propose a novel approach for analysing time se-
ries of systolic and diastolic blood pressure as well as heart
rate variability measured in the 20th week of gestation in
order to predict pre-eclampsia. For this aim, we identify the
recurrence matrix (calculated from time series) with the ad-
jacency matrix of a complex network and apply measures
for the characterisation of complex networks to this recur-
rence matrix. We demonstrate the potential of the complex
network measures for a further improvement of the positive
predictive value of pre-eclampsia.

1. Introduction

Pre-eclampsia is a serious disorder in pregnancy and is
related with a remarkable maternal and neonatal morbidity
and mortality affecting 3–5% of pregnant woman. Charac-
teristic symptoms are sudden hypertension (rise in blood
pressure) and proteinuria, connected to life-threatening
cramps for mother and fetus, under-supply of the fetus and
its growth retardation. A typical treatment is early delivery,
which can be problematic because of the prematurity of the
fetus. Therefore, an early prediction is highly desirable as
it would allow for earlier countermeasures to control this
pregnancy-specific disorder. The standard diagnostic tool
is a Doppler sonography with a positive predictive accu-
racy of 20–30%.

Recent studies have suggested to include heart rate, sys-
tolic and diastolic blood pressure in order to improve the
positive predictive accuracy [9, 23]. Here we propose to
apply a complex network based recurrence analysis of the
available time series in order to predict the disorder.

Recurrence is a fundamental property of dynamical sys-
tems and has been studied in theory and real world appli-
cations by various methods. One of the more recent ap-
proaches is the recurrence plot [12]. A recurrence plot
(RP) is the graphical representation of a binary symmetric
square matrix which encodes the times when two states are
in close proximity (i.e. neighbours in phase space). Based

on such a recurrence matrix, a large and diverse amount
of information on the dynamics of the system can be ex-
tracted and statistically quantified (using recurrence quan-
tification analysis, dynamical invariants, etc.). Meanwhile
this technique has been the subject of much interest from
various disciplines [10] and has been successfully applied
to a number of areas: the detection of dynamical transitions
[21] and synchronisation [18], the study of cardiovascular
health conditions [13], and economical dynamics [2, 8], or
to monitor mechanical behaviour and damages in engineer-
ing [14, 19]. It is important to emphasise that recurrence
plot based techniques are useful for the analysis of short
and non-stationary data, which often presents a critical is-
sue when studying real world data.

Besides, complex networks are powerful tools for the
analysis of complex and, in particular, spatially extended
systems [3, 20, 24]. Local and global properties (statisti-
cal measures) of complex networks are helpful to under-
stand complex interrelations and information flow between
different components in extended systems, such as social,
computer or neural networks [24], food webs, transporta-
tion networks, power grids [1], or even in the global climate
system [6]. The basis of complex network analysis is the
adjacency matrix, representing the links between the nodes
of the network. Like the recurrence matrix, the adjacency
matrix is also square, binary, and symmetric (in the case of
an unweighted and undirected network).

In fact, the recurrence matrix and the adjacency matrix
exhibit a strong analogy: a recurrence matrix represents
neighbours in phase space and an adjacency matrix repre-
sents links in a network; both matrices embody a pair-wise
test of all components (phase space vectors resp. nodes).
Therefore, we identify the adjacency matrix of a complex
network with the recurrence matrix of a dynamical system
[7, 11], allowing us to apply measures of complex network
theory to a RP in order to quantify the RP’s structure and
the corresponding topology of the underlying phase space
trajectory and to obtain additional information on the un-
derlying process.

In the following, we will summarise the concept of the
recurrence network analysis. Then we will apply this con-
cept on a study of pre-eclampsia in order to improve its
early preditcion.
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2. Recurrence plots and complex networks

A recurrence plot (and, thus, the adjacency matrix) is a
representation of recurrent states of a dynamical system in
its m-dimensional phase space. It is a pair-wise test of all
phase space vectors ~xi (i = 1, . . . ,N, ~x ∈ Rm) among each
other, whether or not they are close:

Ri, j = Θ
(
ε − ‖~xi − ~x j‖

)
− δi, j, (1)

with Θ(·) being the Heaviside function, δi, j the Kronecker
delta, and ε a threshold for proximity [12]. The binary ma-
trix R contains the value one for all close pairs ‖~xi−~x j‖ < ε.
In terms of a complex network, each state vector in phase
space represents one distinct node and closeness of two
states (i.e., recurrence) represents a link.

A phase space trajectory can be reconstructed from a
time series {ui}

N
i=1 by time delay embedding [16]

~xi = (ui, ui+τ, . . . , ui+τ(m−1)), (2)

where m is the embedding dimension and τ is the delay.
Small-scale features in a RP can be observed in terms

of diagonal and vertical lines. The presence of such lines
reflects the dynamics of the system and is related to diver-
gence (Lyapunov exponents) or intermittency [13, 17, 21].
Following a heuristic approach, a quantitative description
of RPs based on these line structures was introduced and is
known as recurrence quantification analysis (RQA) [10].

For example, slowly changing states, as occurring dur-
ing laminar phases (intermittency), result in vertical line
structures in the RP. Therefore, the distribution P(v) of ver-
tical line lengths v can be used to quantify laminar phases
occurring in a system. A useful RQA measure for quantify-
ing such laminar phases is the fraction of recurrence points
forming vertical structures of minimal length vmin,

LAM =
∑N

v=vmin
v P(v)∑N

v=1 v P(v)
, (3)

which is called laminarity [12].
Following the idea of complex networks, the RP can also

be heuristically quantified by complex network measures,
that are well studied in literature [3, 7]. A complex net-
work is invariant under permutation of the node order. Con-
sequently, network measures will not directly reflect the
dynamical properties of the system studied with RPs, but
topological properties of the attractor.

For example, the averaged clustering coefficient C =∑
v Cv/N gives the probability that two neighbours (i.e. re-

currences) of any state are also neighbours [24]. It is ob-
tained as the average of the local clustering coefficient

Cv =

∑N
i, j=1 Rv,iRi, jR j,v

kv(kv − 1)
, (4)

with kv =
∑N

v, j=1 Rv, j the number of neighbours of the state
at time v. Cv characterises localised higher-order spatial

correlations along the phase space trajectory. Specifically,
high values of Cv often coincide with dynamically invari-
ant objects, such as periodic or unstable periodic orbits or,
more generally, invariant manifolds [7], and low values cor-
respond to higher variability or less regularity of the phase
space trajectory.

We illustrate the potential of the discussed measures by
an analysis of the logistic map

xi+1 = a xi (1 − xi) . (5)

In the analysed range of a, various dynamical regimes and
transitions between them occur (Fig. 1A), e. g., accumu-
lation points, periodic and chaotic states, band merging
points, period doublings, inner and outer crises [4, 15, 22],
and can be identified with RQA [13]. The RQA mea-
sure LAM reveals intermittent dynamics (laminar regimes)
by sudden increase of its values (Fig. 1B). The clustering
coefficient indicates periodic dynamics by high values up
to value one (Fig. 1C, D). As the system’s dynamics be-
haves rather regular also during intermittency, the laminar
regimes are clearly revealed byCv as lines in the bifurcation
diagram – coinciding with supertrack functions (Fig. 1D).
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Figure 1: (A) Bifurcation diagram of the logistic map
(N = 10, 000). (B) Maxima in LAM reveal laminar regimes
(band merging point, intersection points of supertrack func-
tions). (C) Averaged clustering coefficient C and (D) lo-
cal clustering coefficient are indicating periodic and inter-
mittent regimes. For calculation of the RP the time se-
ries have not been embedded; the recurrence threshold was
ε = 0.05σ.

3. Data

We analyse data of beat-to-beat values H(t) (30 min,
resting conditions, approx. 1800 values) and diastolic D(t)
and systolic S (t) blood pressure measured in the 20th week
of gestation. These data series were measured on 96 preg-
nant woman, 24 of them have finally suffered on pre-
eclampsia. The data have not been pre-processed.
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Figure 2: Exemplary data series of blood pressure and heart
rate variability for (A) pre-eclampsia and (B) control group.

We construct the phase space vectors ~x(t) not by embed-
ding but using all three measurements ~x = (H, S ,D)T . In
the next step we calculate the RP from this phase space
trajectory by using a constant recurrence threshold of 0.8.

4. Results

The RPs of the pre-eclampsia and the control group do
not visually differ much (Fig. 3). A complex network rep-
resentation based on a force directed placement algorithm
[5] already shows some slight differences, nevertheless dif-
ficult to reliably explain just by visual inspection (Fig. 4).
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Figure 3: Exemplary recurrence plots for (A) pre-
eclampsia and (B) control group.

The calculation of RQA and complex networks measures
allows a quantitative characterisation of the recurrence
structure of the cardiovascular data of the pre-eclampsia
and control group (Tab. 1). We apply a Mann-Whitney U
test for testing whether the medians of the distributions of
the calculated measures of pre-eclampsia and control group
differ. Considering the measurements of heart rate variabil-
ity, systolic, or diastolic blood pressure alone, the medians
are not able to distinguish between the two groups. The
RQA measure LAM, which has been found to be a good
candidate for the detection of cardiovascular disorders [13],
is also not able to distinguish between the two groups (we
have also tested other RQA parameters: only the recur-
rence rate RR performed slightly better than LAM). In

A B

Figure 4: Exemplary complex networks representation for
(A) pre-eclampsia and (B) control group (based on RPs
shown in Fig. 3).

Table 1: Median (standard deviation) of the cardiovascular
measurements and the recurrence based measures for pre-
eclampsia and control group as well as their corresponding
p-value.

Pre-eclampsia Control p
H (ms) 734.5 (±110.8) 760.5 (±111.7) n.s.
S (mmHg) 123.0 (±15.4) 123.5 (±20.0) n.s.
D (mmHg) 75.5 (±10.4) 66.6 (±13.9) n.s.
LAM 0.80 (±0.10) 0.83 (±0.08) n.s.
Cv 0.60 (±0.03) 0.62 (±0.04) 0.0015

contrast, the clustering coefficient Cv is able to discrimi-
nate the two groups of pre-eclampsia and control with good
confidence. The positive predictive accuracy is 60% and
the negative accuracy value is 80%. Thus, using the com-
plex network approach we could improve the early predic-
tion of pre-eclampsia from currently 20–30% to now 60%.
For pre-eclampsia, Cv is slightly lower than for the control
group, suggesting a less regular cardiovascular oscillating
regime related to the disorder. However, these are very first
and preliminary results and are still subject of thorough re-
search.

5. Conclusions

We have linked the recurrence matrix with the adjacency
matrix of a complex network. This allows us to calculate
complex network measures of a time series. As most of the
complex network measures have no direct counterpart in
recurrence quantification analysis, they give additional in-
sights into the recurrence structure of dynamical systems.
In general, this method allows to distinguish between dif-
ferent dynamical regimes and also to detect corresponding
dynamical transitions.

By applying this novel approach to the cardiovascular
data of pregnant woman, we have been able to early pre-
dict the serious disorder of pre-eclampsia with a positive
predictive value of 60% (standard method: 20–30%).
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