
Design Framework for practical optimum nonlinear filter
for unknown noise characteristics

Yukihiro Tadokoro†

†TOYOTA Central R&D Labs., Inc.
41-1, Nagakute, Aichi 480-1192, JAPAN

Email: tadokoro@mosk.tytlabs.co.jp

Abstract—A nonlinear filtering method was previously
proposed that can estimate a weak signal buried in strong
non-Gaussian noise. This method is useful in signal pro-
cessing because it can realize the Cramér-Rao lower bound
in the estimation. To determine the filter characteristics, a
mathematical expression for the probability density func-
tion (PDF) of the noise is necessary. The original study as-
sumed that the PDF was known, but in practical situations,
this assumption is not true. The present study considers the
use of the filter in a situation where the PDF is unknown. A
method for estimating the PDF is presented, together with
the corresponding filter function. Kernel density estimation
is employed using Epanechnikov kernel in order to reduce
the computational complexity, and the optimum bandwidth
(at which the estimation performance is maximized) is de-
rived. Through numerical evaluation, the proposed method
is confirmed to be effective.

1. Introduction

The estimation of a weak signal buried in strong noise
has been well discussed in the signal processing field [1,2].
The theoretical limit, which is called the Cramér-Rao lower
bound, states that the estimation error is not less than the
inverse of the Fisher information [3, 4]. Our previously
proposed method [5, 6] is attractive since it can achieve
the bound in the case of non-Gaussian noise cases. From
the input signal x, which contains the weak signal and the
noise, a device/algorithm with the following in-out func-
tion can output the signal component:

Fopt(x) = a − b
{
∂

∂n
log ρ(n)

}
n=x
. (1)

Note that ρ(n) is the probability density function (PDF) for
the noise, and a is constant and b is non-zero constant.

Since Eq. (1) involves a derivative of the noise PDF, an
estimated mathematical expression for the noise PDF is re-
quired. In our previous studies, the PDF was assumed to be
known. However, in practical situations, the noise charac-
teristics depend on the surrounding environment, and hence
should be estimated from noise samples before filtering the
noisy input.

The present paper proposes an estimation framework
for the noise PDF and the corresponding in-out function.

The estimation method is optimized for the in-out function
Fopt(x) in order to satisfy the following requirements: 1)
the estimation performance should be high enough to max-
imize signal-to-noise ratio (SNR) at the output, 2) the pro-
posed method can be applied to any type of white noise,
and 3) the estimated PDF is differentiable. The function
in Eq. (1) was derived for the purpose of maximizing the
output SNR. In this sense, the method proposed in present
study should also yield a maximum SNR. To improve its
validity, we focus on non-parametric estimation because
the method should be applicable to any type of white noise.
The third point listed above is obvious since the function is
obtained by taking a differential.

Many types of non-parametric estimation methods have
been discussed, including those based on the traditional
histogram, kernel density estimation (KDE) [7, 8], and the
characteristic kernel [9–11]. The method in the present
study is based on the kernel density method because A)
the estimated function is differentiable if the Epanechnikov
kernel is employed, B) the computational complexity us-
ing the Epanechnikov kernel is reduced to half that for
other kernels, and C) the optimum bandwidth, which gives
the maximum output SNR, is analytically derived. It is
well known that the performance of KDE depends on the
“bandwidth”. The optimum value has been theoretically
derived [12], but it cannot be calculated because the origi-
nal PDF ρ(n) is required. Sub-optimum methods have also
been proposed. In many cases, a Gaussian kernel is as-
sumed, and/or additional cost is required (e.g. the plug-in
method) [13, 14]. As will be discussed in Sec. 3, the pro-
posed method exploits the characteristic of the in-out func-
tion Fopt(x), which gives a simple solution for optimum
parameter tuning. The numerical evaluation enhances the
effectiveness of the proposed method.

2. Proposed filtering system with PDF estimation

A schematic diagram of the proposed method is shown in
Fig. 1. The nonlinear filter has an input xi which contains a
weak signal si and white noise ni. The subscript i represents
the time index. The filter extracts the weak signal compo-
nent from the noisy input, and then outputs the signal yi.
The filter function F̂opt(x) is calculated based on estimated
noise PDF ρ̂(n). For simplicity, it is assumed that a large
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Figure 1: Schematic diagram of proposed system with
noise PDF estimation.

number of noise samples ñ j are measured in advance, and
ni and ñ j have the same PDF ρ(n). In addition, to consider
the situation where a weak signal is buried in the noise, the
noise intensity is large compared to the signal power.

The KDE method estimates the PDF by using a kernel
function K(u) such as,

ρ̂(n) =
1

Nh

N∑
j=1

K
(

n − ñ j

h

)
(2)

where N is the number of the noise samples ñ j, and h is
bandwidth, which is the key parameter for the estimation
performance [7]. Substituting Eq. (1) into Eq. (2), we have

F̂opt(xi) = a − b

∑N
j=1

∂
∂xi

K
( xi−ñ j

h

)
∑N

j=1 K
( xi−ñ j

h

) . (3)

This expression indicates that to calculate the function, a
computation of the order 2N is required, which is denoted
by O(2N). Each of the summations in Eq. (3) requires N
addition operations.

The proposed method employs the Epanechnikov kernel
which is expressed as,

K(u) =
3
4

(1 − u2)U(|u| ≤ 1) (4)

where

U(|u| ≤ α) =
{

1 (|u| ≤ α)
0 (|u| > α) (5)

and α is constant. From Eq. (5), the kernel is discontinu-
ous at the point |u| = α; thus, the third requirement given
in Sec. 1 is not satisfied. To obtain a differentiable ker-
nel, a small parameter ϵ is now introduced. In the region
ñ j − h + ϵ ≤ xi ≤ ñ j + h − ϵ, the kernel function K( xi−ñ j

h )
is continuous, i.e., differentiable. Substituting Eq. (4) into
Eq. (3) gives the proposed function as

F̂opt(xi) = a +
b
h

 1

1 − xi−µxi
h

− 1

1 + xi−µxi
h

 . (6)

The variable µxi denotes the averaged value of the noise
samples ñ j included in the region ñ j−h+ϵ ≤ xi ≤ ñ j+h−ϵ.

It may be thought that since other kernels such as Gaus-
sians are differentiable, the merit of Eq. (6) is not apparent.
However, one of the advantages of using the Epanechnikov
kernel is that the computational complexity can be reduced
by a factor of two. As previously mentioned, KDE-based
functions generally require O(2N) computations. For ex-
ample, in the case of a Gaussian kernel, the derivative is an
exponential function, and then Eq. (3) involves two differ-
ent summations of exponential functions. Each requires
O(N) computations, and the resulting function does not
have a simple form like the in Eq. (6). Due to the use of
the second-order kernel, the function in Eq. (6) is derived,
and the filter output can be obtained only by calculating
the average of the noise samples, µxi . Such an operation
requires O(N) computations, which means that the compu-
tational complexity of the proposed method is half that for
other kernels.

3. Optimization of the bandwidth

The estimation performance in KDE depends on the
bandwidth. Indeed, the function in Eq. (6) has an im-
plicit bandwidth dependence due to the presence of µxi . In
this section, a method is proposed for setting the optimum
bandwidth in order to obtain a filtering performance close
to the theoretical one.

The optimum bandwidth hopt can be derived by minimiz-
ing the asymptotic mean square error (AMSE)

hopt =

 R(k)
β2

2(k)R(ρ(n))

 1
5

N−
1
5 , (7)

where R(z) =
∫

z2(v)dv and β2(k) is the second moment of
the kernel function [7]. In practice, the value of hopt cannot
be calculated because the original PDF ρ(n) is required.

A method optimized for the function in Eq. (1) is pro-
posed in this study. This is obtained by exploiting the char-
acteristics of the filter; the optimum function Fopt(x) gives
the maximum output SNR. From this viewpoint, the op-
timum bandwidth ĥopt can be derived using the following
criterion:

ĥopt = arg max
h

[
γ
]
. (8)

Note that γ = ⟨ ∂∂x F̂opt(x)⟩2
⟨F̂2

opt(x)⟩−⟨F̂opt(x)⟩2 denotes the normalized out-

put SNR and ⟨z⟩ = 1
N

∑N
i=1 zi [6].

Equation (8) is unfortunately not solvable since it is im-
possible to take the derivative of the estimated function
F̂opt(x) (more precisely, the variable µxi is not differen-
tiable). An alternative method is now introduced using the
relation between the output SNR and the in-out correlation.
The correlation C between the weak signal and the filter
output is defined as

C =
1
N

∑N
i=1(si − ⟨s⟩)(yi − ⟨y⟩)√

1
N

∑N
i=1(si − ⟨s⟩)2

√
1
N

∑N
i=1(yi − ⟨y⟩)

. (9)
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Figure 2: Schematic diagram of proposed filter with opti-
mum bandwidth calculation.

It is considered that the signal si is sufficiently small com-
pared to the noise ni. In this situation, a Taylor expansion
can be applied to the filter output [6], so the correlation is
simply expressed as,

C ≈
[
1 +

1
Psγ

]− 1
2

. (10)

For a signal power Ps = 1.0, the optimum bandwidth is
obtained as,

ĥopt = arg max
h

 1
1

C2 − 1

 = arg max
h

[
C2

]
. (11)

Figure 2 presents a schematic diagram of the proposed
method with an optimum bandwidth estimation. The key
point in this approach is that the correlation is calculated
using a dummy signal s̆ j, which is introduced to the fil-
ter instead of the original weak signal si. From Eq. (9),
the correlation should be calculated using the original weak
signal, but this is obviously unknown on the filter side. Ow-
ing to the lack of dependence of Eq. (1) on the shape of the
weak signal, any weak signal can be chosen to represent
si. The proposed method consists of two steps. In the first
step, the switch “SW” is set to “2.”, and the optimum band-
width is calculated based on Eq. (11). In the next step, the
switch is changed to “1.” and the value of µxi corresponding
to the input signal xi is calculated. Then, the filter function
Eq. (6) is obtained, and finally, the weak signal component
is extracted from the noise input xi.

4. Numerical examples

The aim of employing the filter is to extract a weak signal
buried in strong noise. In this section, the performance of
the proposed method is numerically evaluated in terms of
the output SNR and the bandwidth.

Table 1: Evaluation parameter settings.

Parameter Value
White noise Mixed Gaussian noise

Mean ν1 = 2.0, ν2 = −1.0
Variance σ2

1 = 2.0, σ2
2 = 1.0

Weight parameter β = 0.5
Weak signal Sinusoidal

Frequency fc = 100[Hz]
Amplitude A = 0.10[V]

Num. of noise samples N = 30000

Table 2: Numerical example of optimum bandwidth and
output SNR.

Estimate Theory
Optimum bandwidth 0.140 0.406
Output SNR [dB] -2.65055 -2.65040

The settings used for the evaluation are as follows. Mix-
ture Gaussian noise is used for the white noise ni and ñ j

because the filter in Eq. (1) is valid for non-Gaussian noise.
The PDF is given by ρ(n) = βΨ(ν1, σ2

1) + (1 − β)Ψ(ν2, σ2
2),

where β is a weight parameter, and Ψ(ν, σ2) represents a
Gaussian PDF with a mean ν and a variance σ2. The weak
signal is sinusoidal with a frequency fc and an amplitude A.
The parameter values are given in Table 1. The power of
the weak signal is confirmed to be sufficiently small com-
pared to the white noise. The N noise samples ñ j are nu-
merically generated, and the noisy input samples xi are then
filtered out to obtain the output. The filter parameter, a and
b are set as 0 and 1, respectively.

The values of the output SNR and the optimum band-
width are shown in Table 2. These values were obtained
by averaging the results of 50 trials. The theoretical band-
width was calculated based on Eq. (7). From this table, the
output SNR for the proposed method is almost the same
as the theoretical value, indicating that it is likely to be an
effective filtering method.

Although the output SNR is very close to the theoretical
value, the estimated bandwidth is different to the theory.
Figure 3 shows the dependence of the bandwidth on the
output SNR. For reference, the input SNR is also shown.
It can be seen that the output SNR does not change very
much in the region 0.05 ≤ h ≤ 1.00; an output SNR close
to the theoretical value can be achieved for any bandwidth
in this region. Even though there is a difference between
the estimated and theoretical bandwidths in Table 2, this is
not a problem in terms of the filtering performance. Note
that the effectiveness of Eq. (1) is confirmed because the
output SNR is improved compared to the input.
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Figure 3: Dependence of output SNR on the bandwidth.

5. Conclusion

The present paper described a method for estimating the
noise PDF and the corresponding in-out function. The pro-
posed method is based on KDE, which is a nonparametric
estimation method, thus allowing it to be applied to any
type of white noise. Due to the use of a second-order
Epanechnikov kernel, the computational complexity was
reduced to half of that for other kernels. The optimum
bandwidth for achieving the maximum output SNR was
also derived. The effectiveness of the proposed method was
confirmed by a numerical evaluation, which implies that it
is likely act as a practical filtering system.
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