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Abstract—Neuron in the cerebral cortex, which is said
that a more higher-order function is governed, emits spikes
very irregularly with low reliability. The question of why
the brain works elaborately though such a seemingly prob-
abilistic vague neurons has been studied for a long time.
In this study, we study the effect of noise and oscillatory
inputs from the aspect of neuronal reliability which is ob-
served through Fano factor and investigate their roles in
neural coding. We show that the noise switches its cod-
ing performance depending on the amplitude of oscillatory
inputs.

1. Introduction

It is generally assumed that the information coding is
done by the spike signal which is the neuronal responses.
However, neuron in the cerebral cortex, which is said that a
more higher-order function is governed, emits spikes very
irregularly with low reproducibility[1]. On the other hand,
neurons can fire with high temporal precision and reliabil-
ity in vitro[2][3][4]. Information-theoretical analyses of the
neuronal spike trains in several areas indicate that precise
spike times contain more information about the stimulus
than firing rate alone[5]. It is unknown how these precise
spike times are used in the cerebral cortex[6][7][8]. Pre-
cisely timed reproducible spiking has been experimentally
observed with a precision of milliseconds[9] which sug-
gests the importance of precise spike timing in information
processing.

Spike-time reliability is a measure for the reproducibil-
ity of individual spike times across trials[9]. Neurons pro-
duce a reliable sequence of spike times in response to some
inputs and respond unreliably to others. In the in vitro
slice, neurons fire reliably when injected with a random
current containing high frequency components, but they
fire unreliably when driven with a low pass or constant
current[9][10]. Sinusoidally driven neurons show reso-
nances in the reliability as a function of drive frequency
[11].

Temporal spike coding schemes assume that neurons
exchange information encoded by precisely timed spikes.
Shadlen and Newsome showed that a short term firing rate
can be reliably estimated by ensemble averaging of about
hundred neurons (=population rate coding), without resort-
ing to classical temporal averaging[1]. It is still controver-
sial which coding scheme is used in the brain[12].

When we consider the coding scheme of seemingly
probabilistic vague neurons, we can’t help referring to the
role of noise which plays an important role in neuronal cod-
ing. The improvement of signal transmission and detection
through noise has been studied keenly over the past two
decades under the paradigm of stochastic resonance[13].
Stochastic resonance is typically defined in terms of the
signal-to-noise ratio in response to periodic stimulation. A
long series of experiments has now firmly established that
sensory neurons of various modalities benefit from ambient
noise[14][15].

Periodic oscillatory rhythms, which emerge in the the-
ory of stochastic resonance, also play important roles in
neuronal coding. For example, theta phase precession has
lead to the notion of phase coding that information is repre-
sented by the phase at which a cell fires. Indeed, it has been
demonstrated that when estimating a rat’s position from the
firing of multiple place cells alone, the accuracy of estima-
tion can be improved by taking the theta phase of firing
into account[19]. Experimental data suggest that late firing
in the theta cycle predicts upcoming positions on the rat’s
path whereas early firing in the cycle represents the rat’s
current position[20].

In this study, we speculate the correspondence between
the effect of noise and rhythms from the aspect of neuronal
reliability and investigate their roles in neural coding.

2. Fano factor and neuronal reliability

Fano factor is known as the ratio of the spike count vari-
ance to the spike count mean. Generally, Fano factor for a
given counting window is useful for determining the irreg-
ularity of the point process. In order to use the Fano factor
for quantifying the reliability of neurons, we set the size
of the counting window small. In this case, a similar spike
number per counting window makes the Fano factor small.
For example, if the spike number is the same for all the tri-
als, which means the perfectly reliable firing, Fano factor
would be 0. In this way, high Fano factor indicates the low
reliability of a neuron, and low Fano factor indicates the
high reliability of a neuron.

In the concept of rate coding, the spike timings can be
unreliable and inaccurate. On the other hand, in order to
maintain the synchronicity for temporal coding, it is im-
portant that the neurons fire with high reliability and pre-
cision. Here, we can roughly define that high Fano factor
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corresponds to the rate coding, and low Fano factor corre-
sponds to the temporal coding.

3. LIF with oscillatory and noisy inputs

The leaky integrate-and-fire model (LIF) neuron is
likely the most widely studied of the abstract neuron
models[1][16][21], especially in investigations of the neu-
ronal code[16][17]. The main advantage of this model is
its simplicity. We add the sinusoidal input for the common
inputs to each trial, and the noise for the independent inputs
to each trial. The model is depicted as

V̇i(t) = −Vi(t) + I0 + Asin(2π f t) + Bξi(t) +Cηi(t),(1)

if Vi(t) = θ, then Vi(t + 0) = V0, (2)

where Vi(t), θ denote the membrane potential of ith trial
and the threshold respectively. When the membrane po-
tential Vi(t) reaches the threshold θ, the neuron fires an ac-
tion potential (a “spike”) and instantly resets Vi(t) to V0.
ξi(t) is a Gaussian noise with ensemble-averaged quan-
tities ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξi(t′)⟩ = δ(t − t′), and ηi(t)
is a colored noise which obeys Ornstein-Uhlenbeck pro-
cess with ensemble-averaged quantities ⟨ηi(t)⟩ = 0 and
⟨ηi(t)ηi(t′)⟩ ∝ exp(−|t − t′|/s).

The parameter A, B, and C determine the amplitude of
sinusoidal input, white noise, and colored noise respec-
tively. We investigate how these parameters affect Fano
factor in the next section.

4. Result

We first observe the case of the noisy state. The noisy
state is realized when the oscillatory input term is weak and
the noise term is strong. Figure 1 shows the Fano factor for
a certain bin size ∆ with 100 trials from equations (1) and
(2).

Fano factor increases with increasing B when the oscil-
latory input is weak. When the oscillatory input is weak,
spikes are generated by stochastic noise. Therefore, the
rate of Fano factor is around unity, which means that it is
almost random as a Poisson process and the reliability is
low. Increasing the noise term B makes the firing more
noisy, which makes the Fano factor increase. From the as-
pect of neural coding, the noise B plays a role for enhancing
rate coding.

Next, we investigate the case of the quasi-noisy state.
The quasi-noisy situation is realized when the oscillatory
input term and the noise term is balanced. Figure 2 shows
the Fano factor in the quasi-noisy state.

Fano factor is almost constant for increasing B in the
quasi-noisy state. The rate of Fano factor is lower than that
of the noisy state, since the ratio of the oscillatory inputs
increased compared with the colored noise.

Figure 3 shows the Fano factor in the weak-noise state.
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Figure 1: Fano factor in the noisy state obtained from equa-
tions (1) and (2). The parameters are set as V0 = 0, θ =
1, I0 = 0.9, A = 0.01,C = 0.1, f = 0.025,∆ = 15, respec-
tively. Fano factor increases with increasing B.
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Figure 2: Fano factor in the quasi-noisy state obtained
from equations (1) and (2). The parameters are set as
A = 0.03,C = 0.08, respectively. Other parameters are
set as the same as in the case of Figure 1. Fano factor is
almost constant for increasing B.

Fano factor shows a nonlinear correspondence with
white noise. There is a local minimum in B = 0.075. When
B = 0, the spike count for each trial is 0 or 1. When we
increase B from B = 0 to B = 0.075, the spike count in-
side the bin for each trial is 1 for a great number of tri-
als. This makes Fano factor decrease since the neuronal
reliability increases. If we increase B further more from
B = 0.075, 1 or 2 spikes in several trials are observed.
When B = 0.1375, there is a small local minimum since
the spike count is same number 2 for several trials. How-
ever, if we further increase B from B = 0.1375, Fano factor
increases since the state of the neuron gradually shifts to
the noisy state.

This nonlinear response is called stochastic resonance,
typically defined in terms of the signal-to-noise ratio in re-
sponse to periodic stimulation. When neurons are driven
to fire at rates near frequency of the oscillation, they phase
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Figure 3: Fano factor in the weak-noise state obtained
from equations (1) and (2). The parameters are set as
A = 0.1,C = 0.001, respectively. Other parameters are
set as the same as in the case of Figure 1 and 2. Fano fac-
tor shows a nonlinear correspondence with white noise, ex-
hibiting stochastic resonance. There is a local minimum in
B = 0.075.

lock with the periodic oscillation. This produces the re-
duction of spike-count variability and have been studied in
several former studies of neuron models[22][23].

Figure 4 shows the Fano factor for fixed white noise
strength B, and modulating the strength of periodicity A/C
under the condition of preserving the average firing fre-
quency.

Fano factor monotonically decreases with increasing
A/C. When the parameter A/C is small, the neuron is in a
noisy state and has low reliability so that it uses the concept
of rate coding for information transfer. The white noise en-
hances the rate coding performance as we saw in Figure
1. As the parameter A/C increases, Fano factor decreases
so that high reliability is realized by the weak-noise state
neuron, and neurons use temporal coding. In this weak-
noise state, neuron uses a stochastic resonance as we saw
in Figure 3. The role of noise shifts its performance on
both neuronal reliability and neural coding, depending on
the strength of the oscillatory inputs A/C.

5. Discussion

We studied the effect of the noise and rhythms from the
aspect of neuronal reliability. Neuronal reliability is de-
fined by the rate of Fano factor with short time window.
From the observation of Fano factor in several parameters
changing input characteristics, we investigated the roles of
the noise related to the performance of neural coding.

In a noisy state, asynchronous firing of cortical neurons
induced by the white noise may play a positive role in the
brain in a meaning different from stochastic resonance and
coherence resonance. It plays a role for enhancing the abil-
ity of rate coding. This phenomenon has been studied by
Masuda and Aihara in the concept of dual coding[12].
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Figure 4: Fano factor for fixed noise strength B by modulat-
ing the ratio of the oscillatory input and the colored noise
A/C in equations (1) and (2). The parameters are set as
B = 0.075. The parameters A and C are both modulated
at the same time from A = 0.009 to A = 0.1 and from
C = 0.09 to C = 0.001 respectively, under the condition
of preserving the average firing frequency at 25Hz. Other
parameters are set as the same as in the case of Figure 1, 2,
and 3. Fano factor monotonically decreases with increasing
A/C.

In a quasi-noisy state, the white noise had little effect
on neuronal reliability. This state can be interpreted as the
bifurcation point for a white noise in terms of its aspect of
neural coding.

In a weak-noise state, neurons are driven to fire at rates
near frequency of the oscillation, and they phase lock with
the periodic oscillation and produces a saturation of the fir-
ing rate, reduction of spike-count variability. Neurons use
the stochastic resonance for realizing high neuronal relia-
bility. The white noise plays a key role for the stochastic
resonance and the temporal coding in the brain. Its perfor-
mance is completely different from that in a noisy state.

As in Figure 4, noise switches its coding performance
depending on the amplitude of the oscillation. The am-
plitude of the oscillation is modulated by attention which
raises the oscillatory activity in both spike trains and field
potentials[18]. Three noise states in the previous section
may correspond to the three level of attention. The noisy
state corresponds to the low level of attention, and the
weak-noise state corresponds to the high level of attention.
According to our result, the white noise shifts its coding
performance with respect to each attention level. For ex-
ample, when the level of attention is high, neurons use the
temporal coding scheme. Stochastic resonance may occur
with a certain noise strength during the high level of atten-
tion.
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It may be an important issue to investigate the correspon-
dence between attention and coding performance.
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