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Abstract—In this paper, we propose a novel method tgrocess of the complex networks generated by mathemati-
generate a time series from a complex network to identifgal models.
an underlying evolution process behind the complex net-
work. Based on the adjacency information between W8  Method
nodes, we first arrange the nodes in the complex network
in the Euclidean space, and show that their arrangementsin our method, using the classical multidimensional
clearly correspond to their network structure. We furthegcaling(CMDS)[4], we obtain arrangements of nodes in
show that if the complex network is a growing networka complex network in al-dimensional Euclidean space.
namely complex network with temporal evolutions, we carnf distancesd;; between two any objectsand j (i, ] =
regard the obtained arrangements as a time series. Thys,.. N) are given, the CMDS gives an arrangement of
we can transform the complex network to a time series anflese objects in thé-dimensional Euclidean space so that
analyze the time series using the methods based on the netiir distance relations are preserved as correctly as-poss
linear dynamical system theory. ble. Here, our method is originated from the method pro-
posed by Hirata et al.[5] in which an original time series
can be reproduced only from its recurrence plot. We ex-
tend this concept to the complex network analysis. Using

In the real world, there exist several complex networkdhe obtained arrangements and temporal information, we
for example, human relationships, synaptic connections " transform the network to a time series. Our method
neural systems, the world-wide-web, ecological food web§ONSiSts of the following three steps:
and so on. These networks have complex structures and r
cent researches on real complex networks have been clari--
fied that some of these structures are led by temporal evo2. Applying the CMDS to the distance matrix.
lutions of the networks [1, 2, 3]. In such networks, nodes
are added to the network at each temporal step, then thé. Transforming the networkto a time series by using the
network grows with its complex structure formed. Thus, it ~ arrangement of nodes and the temporal information.
is an important issue to clarify how the networks evolve. . . .

Here, we propose a novel method which elucidate an ud-1- Generation of distance matrix
derlying evolution process of growing complex networks. 14 gptain an arrangement of nodes, we first need to de-
Lno:jheesrz;r?g(t):rid cq:zr?r?f%'rth?osﬁvgﬁngtitg%(E:(rjrjsngreén:dnc:fme distances between any two nodes. Here, we introduce
to the network.IO First, the nodes are arranged in the Euﬁr?;itmds for gene.ratm.g_the distance mali¢ -(d")'

, o ) , ype-1 method is originally proposed by Hirata et al.
clidean space based on their adjacency relationships by yga; getermines the distances between two nodes based on

ing the classical multidimensional scaling[4]. Here, iéth i adjacency relationships[5]. In the type-1 methoe, th
networks have temporal information, the nodes have aterafstancedi- between two adjacent nodesnd j is deter-
poral order. Then, we can recognize values of the nodes @s o by tJhe following equation:

a time series and thereby can transform the complex net-
works to the time series. We analyze the obtained time
series by using the time-series analysis methods based on
the nonlinear dynamical system theory.

In numerical simulations, we show that the arrangementghereG; is the set of labels of adjacent nodes of the node
of the nodes in the complex networks clearly correspond i |G| is the number of elements in the €&tandn andu
their network structures. Using the obtained arrangemerdse the union and intersection of two sets. The distances
and the temporal information, we elucidate the evolutiobetween non-adjacent nodes are determined by the shortest

1. Introduction

Generating a distance matrix.

1)
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path length by using the distances between the adjacent tnagular, 0.01 in the small world, and unity in the random
nodes. networks. In the BA model, the network starts with a com-
The type-2 method uses the adjacency information gflete graph consisted afy nodes and only one node with
each nodes directly [6]. If thigh and jth nodes are con- links is added to the network at each temporal step. The ad-
nected, these nodes are similar and welged unity butif  ditional nodes are easy to be connected to nodes with high
two nodes are not connected, these two nodes are dissidegree. We set botimy andl to four and generate a net-

ilar and we setljj tow(> 1). If i = j, we setd;j to zero. work with 1,000 nodes in the numerical simulations. The

Then, in the type-2 method, the distance matrix has onPGM model generates the network having a pseudo-fractal

three values. structures [8]. In the numerical simulations, we generate a
network with 1,095 nodes by the DGM model.

2.2. Classical multidimensional scaling Next, we transform the networks to time series and an-

. . alyze them. To transform the networks to time series, we
Next, we apply the CMDS to the distance matrix 9€N% eed temporal information. The BA model satisfies this
erated from the complex networks. In the CMDS, ther

. ) . "®ondition, because each node is added to the network at
are rqan(wzl)y two pzrocedures[4]. the_ Ceme”.”g of matr'xtemporal step and thereby the nodes have the temporal
A_ =307 = (=dj/2) by the centering matrid and its - o~ yore, modifying the DGM model, we can gen-
eigenvector decomposition, namelpJ = VAVT, where  grate a model which deterministically grows and satisfies
A = diagly, ..., ), V = (v1---Va), anddi andVvi are  he condition, namely only one nodes is added to the net-
the_|th eigenvalue an_d thigh eigenvector. Here, let the co- ok at each temporal step. In the DGM model, an initial
ordinate value of théth node bex; and X = (x1---Xn)-  graph¢ = 0) consists of two nodes with one link. At each
From the relationship between the !nnerle)zroductljaznd themporal step, one node for each link is added to the net-
distance[4] X = VA", whereA"? = diag(l;”“,.... 44°)-  work. Thus, the number of nodes which are added to the
Then the dimensiond, of the Euclidean space in which yanwork at timet is 2 - 3-1(t > 0). We modified the DGM
nodes are arranged is the rankXf By the above men- ,ndel as follows:
tioned procedure, we can obtain the coordinate values of

the nodesX only from the distance matri®. 1. Start with an initial graph consisted of two nodes and
one link. Here, the label of one node is zero, that of
2.3. Complex networkstotime series another node is one, and that of the link is zero. We

set timet to zero. Let the link bé*, which has the

To transform the network to a time series, we use the smallest label.

obtained arrangements and the temporal information when

each node is added to the network. We consider that this2. Add one new node with two links to the network and
temporal order is described as labels of the nodes. For ex- increase timé by one. This new node is connected to
ample, if a node is the first node added to the network, the two nodes at both ends of the lilk

label of the node is one, if the second, the label is two, if )

the third, the label is three, and so on. Thus, considering>: UPdate the label of the link dy 3t — 2.

the coordinate values of each node as the amplitude of they set |abels of the new additional node and two links.
time series and the labels as the temporal order, we can \ye set the label of the new nodette 1. We set one
transform the complex networks to the time series. Inthis  of two links which is connected to the node having the
paper, for the sake of simplisity, we consider that only one  smaller label td* + 1 and the larger label 1 + 2.

node is added to the network at each temporal step.
5. Set the link* to the link with the smallest label.

3. Experimental settings 6. Repeat steps 2-5.

To evaluate the validity of our method, we conduct two Because the modified DGM model deterministically
numerical experiments. First, we confirm how does thgrows with the pseudo-fractal structure formed in a
nodes in the networks are arranged in the Euclidean spabeunded region, its evolution process might show a
We generated the networks by using three models: tlehaotic-like behavior. On the other hand, the BA model
Watts and Strogatz (WS) model [7], the Barabasi and Algrows based on the stochastic rules. Thus, these two net-
bert (BA) model [1], and the Dorogovtsev, Goltsev, andvorks have dterent evolution processes. In the numerical
Mendes (DGM) model [8]. simulations, we generate growing networks from the BA

In the WS model, introducing the link-rewiring proba-and the modified DGM models and transform these grow-
bility p from zero to unity, we varied the network structureing networks to time series. By using the time series predic-
from the regular network to random networks. In the nution, we elucidate the ffierence of the evolution processes
merical simulations, we generated the networks with thiketween them[9].

WS model, which have 1,000 nodes with the average de- To determine the evolution processes of networks by the
gree of ten. We set the rewiring probabiljiyto zero in the prediction, we use the first eigenvector obtained from the
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networks and reconstruct it in tlsedimensional state space
by the time delay coordinate[10]. In the numerical simula-
tions, we sesto eight and determine the temporal detay
by mutual information [11].

Let x(t) be a point in thes-dimensional reconstructed
state space at tinteln the prediction, we estimate the point

X(t + Tp), theT,, steps aftex(t) by the following equation: T At
(a) Regular network (WS model)

Second eigenvector
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D expldyx(m + Tp)

N i=1
K(t+Tp) = = : 2)
> exp-di)
i=1
wherex(m) is theith nearest neighbor of thet), d; is the [ | k= |
Euclidean distance betweett) and x(m), andM is the Fistfgenvector Fist egenvecior
number of the nearest neighbors. (b) Small world network (WS model)

We use the first half of the time series as the database
for the predictions and predict the last half. To evaluage th
prediction accuracy, we investigate the correlationfitoe
cient between the true time series, namely the last half of
the time series, and its predicted time series.

Second eigenvector

4. Results and discussions YT Fiseigenvectr " Fisteigenvector
(c) Random network (WS model)

Figure 1 shows examples of the arrangements of nodes
in the networks. To describe the arrangements in the plane,
we use the two eigenvectors with the first and second
largest eigenvalues. Figures 1(a), (b), and (c) are the ar-
rangements for the regular, small world, and random net-
works generated from the WS model. Figure 1(d) is the
arrangements for the scale free network generated by the et w i e G e oo
BA model. Figure 1(e) is the arrangements for the scale (d) Scale free network (BA model)
free network generated by the DGM model. In Fig. 1, the
left column shows the results for the type-1 method, the
right column shows those for the type-2 method.

From Figure 1, in both the type-1 and type-2 methods,
we can see clear correspondences of the arrangements to
the network structures; the arrangement of the regular net-
work is regular, that of the random network is random, and
that of the small world is in between them (Figs. 1(a), (b),
and (c)). As shown in the random network (Fig. 1(c)), the
network generated from the BA model also has the rando

arrangement because each additional node randomly C(iné regular p = 0), (b) small world p = 0.01), (c) ran-

nects tg_ other nod_es and the connections depends on i ( = 1), and (d),(e) scale free networks. The left col-
probability determined by the degree of each node. Be- .
umn shows the results for Type-1 method, The right col-
cause the network generated from the DGM model has the h hat hod. Th K
seudo-fractal structures[8], its arrangementsshowarachumn shows that for Type-2 method. The networks gener-
pseudo ' ated from (a),(b),(c) the WS model, (d) the BA model, and
acteristic structure. e) the DGM model
Here, the significant elierences between the type-1 ano( '
the type-2 methods are shown in the scale free network. In

the results for the type-2 method, a few points are arrangegher nodes are emphasized in their arrangements. On the

far from other points (Figs. 1(d) and (e) in the right col-5iher hand, in the arrangement by the type-1 method, the

umn). These points correspond to hub nodes which hayg, o des and the other nodes are indistinguishable due to

Significantly hlgher degree than.the other nQdeS. - |n th?\dlrect use of the adjacency relationship (FIgS 1(d)lr(6)
type-2 method, because the adjacency relationship is diq |oft column).

rectly used, the dierences between the hub nodes and the Figure 2 shows the prediction results for time series ob-

Second eigenvector
Second eigenvector

Second eigenvector

Second eigenvector
.‘.ib'
‘8 " .

5 1 o5 o0 05 1 15 2 b3 oz o1 0 o1 oz
First eigenvector First eigenvector

(e) Scale free network (DGM model))

E}gure 1: Examples of the arrangements of nodes in the
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tained from the scale free networks generated from the BB Conclusion

and the modified DGM models. Figures 2(a) and (b) are the ) . ]
results for the type-1 and type-2 method, and both methods!" this paper, we proposed a novel method which eluci-
show the same tendency. From Fig. 2, the correlation cogfate underlying evolution processes of growing complex

ficients for the BA model are low for all prediction steps

networks. In the proposed method, using geometric ar-

On the other hand, those of the modified DGM model artangements of nodes and temporal information when the

also low in the largd p, but high in the small ,. These ten-

nodes are added to the network, we can transform the net-

dencies indicate that the time series obtained from the BNOTKS to time series.

model might be random and that from the modified DGM N numerical simulations, we evaluate the proposed
model might not be random but chaotic. These results inftethod with mathematical models. In addition, to gener-
ply that the time series obtained from the networks includ@te the network which deterministically grows, we modi-
the information of evolution processes of the original netfiéd the model proposed by the Dorogovtsev et al. We first
works, and our method can clarify the underlying informashowed that the arrangements o_f nodes in the complex net-
tion of evolutions of the complex networks by only uSmgworks clearly correspond to their network structures, and

static network structures and the temporal information.

Modified DGM model ——
BA model e ]
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(a) Type-1 method
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(b) Type-2 method

further showed that using the obtained arrangements and
the temporal information, we can determine the evolution
processes of the complex networks generated by the math-
ematical models.
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