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Abstract—In this paper, we propose a novel method to
generate a time series from a complex network to identify
an underlying evolution process behind the complex net-
work. Based on the adjacency information between two
nodes, we first arrange the nodes in the complex network
in the Euclidean space, and show that their arrangements
clearly correspond to their network structure. We further
show that if the complex network is a growing network,
namely complex network with temporal evolutions, we can
regard the obtained arrangements as a time series. Thus,
we can transform the complex network to a time series and
analyze the time series using the methods based on the non-
linear dynamical system theory.

1. Introduction

In the real world, there exist several complex networks,
for example, human relationships, synaptic connections in
neural systems, the world-wide-web, ecological food webs,
and so on. These networks have complex structures and re-
cent researches on real complex networks have been clari-
fied that some of these structures are led by temporal evo-
lutions of the networks [1, 2, 3]. In such networks, nodes
are added to the network at each temporal step, then the
network grows with its complex structure formed. Thus, it
is an important issue to clarify how the networks evolve.

Here, we propose a novel method which elucidate an un-
derlying evolution process of growing complex networks.
In the proposed method, we use geometric arrangement of
nodes and temporal information when the nodes are added
to the network. First, the nodes are arranged in the Eu-
clidean space based on their adjacency relationships by us-
ing the classical multidimensional scaling[4]. Here, if the
networks have temporal information, the nodes have a tem-
poral order. Then, we can recognize values of the nodes as
a time series and thereby can transform the complex net-
works to the time series. We analyze the obtained time
series by using the time-series analysis methods based on
the nonlinear dynamical system theory.

In numerical simulations, we show that the arrangements
of the nodes in the complex networks clearly correspond to
their network structures. Using the obtained arrangements
and the temporal information, we elucidate the evolution

process of the complex networks generated by mathemati-
cal models.

2. Method

In our method, using the classical multidimensional
scaling(CMDS)[4], we obtain arrangements of nodes in
a complex network in ad-dimensional Euclidean space.
If distancesdi j between two any objectsi and j (i, j =
1, · · · ,N) are given, the CMDS gives an arrangement of
these objects in thed-dimensional Euclidean space so that
their distance relations are preserved as correctly as possi-
ble. Here, our method is originated from the method pro-
posed by Hirata et al.[5] in which an original time series
can be reproduced only from its recurrence plot. We ex-
tend this concept to the complex network analysis. Using
the obtained arrangements and temporal information, we
can transform the network to a time series. Our method
consists of the following three steps:

1. Generating a distance matrix.

2. Applying the CMDS to the distance matrix.

3. Transforming the network to a time series by using the
arrangement of nodes and the temporal information.

2.1. Generation of distance matrix

To obtain an arrangement of nodes, we first need to de-
fine distances between any two nodes. Here, we introduce
two methods for generating the distance matrixD = (di j).

The type-1 method is originally proposed by Hirata et al.
that determines the distances between two nodes based on
their adjacency relationships[5]. In the type-1 method, the
distancedi j between two adjacent nodesi and j is deter-
mined by the following equation:

di j = 1−
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whereGi is the set of labels of adjacent nodes of the node
i, |G| is the number of elements in the setG, and∩ and∪
are the union and intersection of two sets. The distances
between non-adjacent nodes are determined by the shortest
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path length by using the distances between the adjacent two
nodes.

The type-2 method uses the adjacency information of
each nodes directly [6]. If theith and jth nodes are con-
nected, these nodes are similar and we setdi j to unity but if
two nodes are not connected, these two nodes are dissim-
ilar and we setdi j to w(> 1). If i = j, we setdi j to zero.
Then, in the type-2 method, the distance matrix has only
three values.

2.2. Classical multidimensional scaling

Next, we apply the CMDS to the distance matrix gen-
erated from the complex networks. In the CMDS, there
are mainly two procedures[4]: the centering of matrix
A = 1

2D(2)
= (−d2

i j/2) by the centering matrixJ and its
eigenvector decomposition, namelyJAJ = VΛVT , where
Λ = diag(λ1, . . . , λd), V = (v1 · · · vd), andλi and vi are
the ith eigenvalue and theith eigenvector. Here, let the co-
ordinate value of theith node bexi and X = (x1 · · · xN).
From the relationship between the innerproduct and the
distance[4],X = VΛ1/2, whereΛ1/2

= diag(λ1/2
1 , . . . , λ

1/2
d ).

Then the dimension,d, of the Euclidean space in which
nodes are arranged is the rank ofX. By the above men-
tioned procedure, we can obtain the coordinate values of
the nodesX only from the distance matrixD.

2.3. Complex networks to time series

To transform the network to a time series, we use the
obtained arrangements and the temporal information when
each node is added to the network. We consider that this
temporal order is described as labels of the nodes. For ex-
ample, if a node is the first node added to the network, the
label of the node is one, if the second, the label is two, if
the third, the label is three, and so on. Thus, considering
the coordinate values of each node as the amplitude of the
time series and the labels as the temporal order, we can
transform the complex networks to the time series. In this
paper, for the sake of simplisity, we consider that only one
node is added to the network at each temporal step.

3. Experimental settings

To evaluate the validity of our method, we conduct two
numerical experiments. First, we confirm how does the
nodes in the networks are arranged in the Euclidean space.
We generated the networks by using three models: the
Watts and Strogatz (WS) model [7], the Barabási and Al-
bert (BA) model [1], and the Dorogovtsev, Goltsev, and
Mendes (DGM) model [8].

In the WS model, introducing the link-rewiring proba-
bility p from zero to unity, we varied the network structure
from the regular network to random networks. In the nu-
merical simulations, we generated the networks with the
WS model, which have 1,000 nodes with the average de-
gree of ten. We set the rewiring probabilityp to zero in the

regular, 0.01 in the small world, and unity in the random
networks. In the BA model, the network starts with a com-
plete graph consisted ofm0 nodes and only one node withl
links is added to the network at each temporal step. The ad-
ditional nodes are easy to be connected to nodes with high
degree. We set bothm0 and l to four and generate a net-
work with 1,000 nodes in the numerical simulations. The
DGM model generates the network having a pseudo-fractal
structures [8]. In the numerical simulations, we generate a
network with 1,095 nodes by the DGM model.

Next, we transform the networks to time series and an-
alyze them. To transform the networks to time series, we
need temporal information. The BA model satisfies this
condition, because each node is added to the network at
temporal step and thereby the nodes have the temporal
order. Here, modifying the DGM model, we can gen-
erate a model which deterministically grows and satisfies
the condition, namely only one nodes is added to the net-
work at each temporal step. In the DGM model, an initial
graph(t = 0) consists of two nodes with one link. At each
temporal step, one node for each link is added to the net-
work. Thus, the number of nodes which are added to the
network at timet is 2 · 3t−1(t > 0). We modified the DGM
model as follows:

1. Start with an initial graph consisted of two nodes and
one link. Here, the label of one node is zero, that of
another node is one, and that of the link is zero. We
set timet to zero. Let the link bel∗, which has the
smallest label.

2. Add one new node with two links to the network and
increase timet by one. This new node is connected to
two nodes at both ends of the linkl∗.

3. Update the label of the link byl∗ ← 3t − 2.

4. Set labels of the new additional node and two links.
We set the label of the new node tot + 1. We set one
of two links which is connected to the node having the
smaller label tol∗ + 1 and the larger label tol∗ + 2.

5. Set the linkl∗ to the link with the smallest label.

6. Repeat steps 2–5.

Because the modified DGM model deterministically
grows with the pseudo-fractal structure formed in a
bounded region, its evolution process might show a
chaotic-like behavior. On the other hand, the BA model
grows based on the stochastic rules. Thus, these two net-
works have different evolution processes. In the numerical
simulations, we generate growing networks from the BA
and the modified DGM models and transform these grow-
ing networks to time series. By using the time series predic-
tion, we elucidate the difference of the evolution processes
between them[9].

To determine the evolution processes of networks by the
prediction, we use the first eigenvector obtained from the
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networks and reconstruct it in thes-dimensional state space
by the time delay coordinate[10]. In the numerical simula-
tions, we sets to eight and determine the temporal delayτ
by mutual information [11].

Let x(t) be a point in thes-dimensional reconstructed
state space at timet. In the prediction, we estimate the point
x̂(t + Tp), theTp steps afterx(t) by the following equation:

x̂(t + Tp) =

M
∑

i=1

exp(−di)x(mi + Tp)

M
∑

i=1

exp(−di)

, (2)

wherex(mi) is theith nearest neighbor of thex(t), di is the
Euclidean distance betweenx(t) and x(mi), and M is the
number of the nearest neighbors.

We use the first half of the time series as the database
for the predictions and predict the last half. To evaluate the
prediction accuracy, we investigate the correlation coeffi-
cient between the true time series, namely the last half of
the time series, and its predicted time series.

4. Results and discussions

Figure 1 shows examples of the arrangements of nodes
in the networks. To describe the arrangements in the plane,
we use the two eigenvectors with the first and second
largest eigenvalues. Figures 1(a), (b), and (c) are the ar-
rangements for the regular, small world, and random net-
works generated from the WS model. Figure 1(d) is the
arrangements for the scale free network generated by the
BA model. Figure 1(e) is the arrangements for the scale
free network generated by the DGM model. In Fig. 1, the
left column shows the results for the type-1 method, the
right column shows those for the type-2 method.

From Figure 1, in both the type-1 and type-2 methods,
we can see clear correspondences of the arrangements to
the network structures; the arrangement of the regular net-
work is regular, that of the random network is random, and
that of the small world is in between them (Figs. 1(a), (b),
and (c)). As shown in the random network (Fig. 1(c)), the
network generated from the BA model also has the random
arrangement because each additional node randomly con-
nects to other nodes and the connections depends on the
probability determined by the degree of each node. Be-
cause the network generated from the DGM model has the
pseudo-fractal structures[8], its arrangements shows a char-
acteristic structure.

Here, the significant differences between the type-1 and
the type-2 methods are shown in the scale free network. In
the results for the type-2 method, a few points are arranged
far from other points (Figs. 1(d) and (e) in the right col-
umn). These points correspond to hub nodes which have
significantly higher degree than the other nodes. In the
type-2 method, because the adjacency relationship is di-
rectly used, the differences between the hub nodes and the
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(a) Regular network (WS model)
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(b) Small world network (WS model)
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(c) Random network (WS model)
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(d) Scale free network (BA model)
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(e) Scale free network (DGM model))

Figure 1: Examples of the arrangements of nodes in the
(a) regular (p = 0), (b) small world (p = 0.01), (c) ran-
dom (p = 1), and (d),(e) scale free networks. The left col-
umn shows the results for Type-1 method, The right col-
umn shows that for Type-2 method. The networks gener-
ated from (a),(b),(c) the WS model, (d) the BA model, and
(e) the DGM model.

other nodes are emphasized in their arrangements. On the
other hand, in the arrangement by the type-1 method, the
hub nodes and the other nodes are indistinguishable due to
indirect use of the adjacency relationship (Figs. 1(d), (e)in
the left column).

Figure 2 shows the prediction results for time series ob-
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tained from the scale free networks generated from the BA
and the modified DGM models. Figures 2(a) and (b) are the
results for the type-1 and type-2 method, and both methods
show the same tendency. From Fig. 2, the correlation coef-
ficients for the BA model are low for all prediction stepsTp.
On the other hand, those of the modified DGM model are
also low in the largeTp, but high in the smallTp. These ten-
dencies indicate that the time series obtained from the BA
model might be random and that from the modified DGM
model might not be random but chaotic. These results im-
ply that the time series obtained from the networks include
the information of evolution processes of the original net-
works, and our method can clarify the underlying informa-
tion of evolutions of the complex networks by only using
static network structures and the temporal information.
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(a) Type-1 method
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(b) Type-2 method

Figure 2: Prediction results for the DGM model (the red
line with crosses) and the BA model (the dark blue dashed
line with circles). The results for (a) the type-1 method and
(b) the type-2 method.

5. Conclusion

In this paper, we proposed a novel method which eluci-
date underlying evolution processes of growing complex
networks. In the proposed method, using geometric ar-
rangements of nodes and temporal information when the
nodes are added to the network, we can transform the net-
works to time series.

In numerical simulations, we evaluate the proposed
method with mathematical models. In addition, to gener-
ate the network which deterministically grows, we modi-
fied the model proposed by the Dorogovtsev et al. We first
showed that the arrangements of nodes in the complex net-
works clearly correspond to their network structures, and
further showed that using the obtained arrangements and
the temporal information, we can determine the evolution
processes of the complex networks generated by the math-
ematical models.
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