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Abstract—In this paper, we introduce chaotic model
neurons as the constituents of the associative memory
model with nonlinear SVMs. We examine the retrieval
characteristics of the dynamical associative memory model
through numerical experiments. As for the stored patterns
used in our previous paper[1], we have demonstrated that
a dynamic associative memory can be realized by the pro-
posed model. In this paper, we investigate retrieval char-
acteristics of recall and transition frequencies of the stored
patterns with considering correlation between them.

1. Introduction

An associative memory retrieves the stored information
that is closest to the cue input information. Such informa-
tion processing may be realized in the brain. Therefore,
associative memory models have been studied not only for
engineering applications but also for studying the mecha-
nism of memory in the brain. Deterministic chaos has been
considered to play an important role in the brain. There-
fore, the relationship between the information processing
function of the brain and deterministic chaos has been in-
vestigated by many researchers. As an example, a dynam-
ical associative neural network model has been proposed
which incorporates a chaotic neuron [2] as a constituent el-
ement of the network [1].

In contrast to a static associative network, a dynami-
cal associative network does not always retrieve the clos-
est stored pattern but recalls other stored patterns in a pe-
riodic sequence [3]. Most conventional dynamical asso-
ciative memory determines synaptic connection weights w
using Hebb learning with patterns to be stored or using an
auto-correlation matrix of the patterns [1]. In this paper,
we introduce the pattern classification technique of nonlin-
ear Support Vector Machines (SVMs) as a learning method
for determining the synaptic connection weights and the
biases. We construct a dynamical associative network by
connecting chaotic neurons with these synaptic weights.
Then, we investigate retrieval characteristics of recall and
transition frequencies of the stored patterns with consider-
ing correlation between them.

2. Support Vector Machine

A Support Vector Machine [4] is an effective classifier
for binary classification problems. We consider a set of
two classes of classification problems for (x™™,y™), m =
1,...,M, where M is the number of training data. x™ e RN
and y™ e {-1, +1} are the learning data and class label,
respectively. SVMs can be realized as neural networks, the
synaptic connection weights w € RN and the bias b of the
constituent neurons in the network can be determined by
the following procedures using training data and their class
labels.

N
y™ [Z wix™ + b] >0 (1)

i=1

Given an unknown input vector x) and its class label, we
classify it as follows:

N
N N >0 (class y = +1)

f(x¥) = ;W'Xi + b{< 0 (class y© = _1) )
The hyperplane f(x) = 0 that represents the class bound-
ary is called the separation plane. The distance between
the training data point which is the nearest to the separa-
tion plane (the Support Vector) and the plane is termed the
margin. The most important feature of an SVM is that it
can determine w and b so that they maximize the margin
between two classes. Therefore, the SVM can obtain gen-
eralization performance for unknown data. In addition, the
separation plane f(x) = 0 is not distinguished from the rest
of the data.

For learning data which are not separable by a plane in
their input space, one can use a nonlinear map ®(-) to map
them in a higher dimensional feature space and construct a
separation plane in the higher dimensional space.

Margin maximization in this feature space can be ob-
tained by solving a convex quadratic programming prob-
lem, which is a standard optimization problem. Concretely,
the constraint conditions for this problem are

M
Za(m)y(m) - 0 ©)
m=1

o™
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Subject to Eq. (3) and Eqg. (4), we maximize the objective
function

M 1 M M
Ia) = o™ _ = a™M oMy My K x(m),x(“)
@=2,0" -3 mzl nZ; ymyOK ( )
(%)

where o™ is a Lagrange multiplier. A kernel function
K(-) gives a measure of the similarity between two vectors
®(xM) and ®(x™M) that are mapped in the higher dimen-
sional feature space. Utilizing the kernel function avoids
the calculation of the inner product of ®(x(™) - d(x™M) in
the high dimensional space and has the advantage that one
can calculate the measure of similarity in a space with the
dimension of the input space. This is the kernel trick, and it
makes it possible for an SVM to classify data having non-
linear separation planes.

With the Lagrange multiplier o™ that maximizes the ob-
jective function of Eq. (5), we assume that connection co-
efficient w(™ is

m=

wm = My @ (x M), (6)
In addition, the bias value b describes an arbitrary support
vector in the following equation for sample data (x(, y().

M
b = yo- Z My (xM)Dd(x()

m=1

M
vy = 3 WK (xM x©) 0
D WK i, )

where WM = oMy and oxM)P(x)) = K(xM, x©).
Furthermore, the discriminant function of a nonlinear SVM
is given by

(W) M (m) W (m) >0(C|aSS y(u) = +1)

™) :ZW K<X X )+ b{<0(class yW = -1)

®)
The nonlinear SVM s represented by a three-layer neural
network. The first layer is the input layer. This layer just
transfers input data to the second layer which performs the
calculation of the measure of similarity between the input
data and the training data by using the kernel function. The
output layer operates as in Eq. (8) and classifies the input
data.

In this paper, we use the Gaussian (RBF) kernel function
K(x™, x™) = exp(- || XM —xM)||2/25?). The variance o2
of the Gaussian kernel function is used to determine the di-
mension of the space in which to perform planar separation
of the training data. In addition, we use the Sequential Min-
imal Optimization (SMO) method [5] for maximization of
the objective function in Eq. (5).

m=1

3. Chaotic Neural Networks

A chaotic neural network is a neural network model that
consists of model neurons that exhibit deterministic chaos.

Such a network can avoid being trapped in a local mini-
mum which conventional static neural networks can eas-
ily fall into. This means that chaotic neural networks have
the possibility of achieving the globally optimal solution.
Therefore, such nonequilibrium dynamics can be also used
for realizing dynamical associative memory. The state up-
dating of the ith neuron in the network is given by

xit+1) = filmi(t+21)+&(t+1)+A), 9)
mt+1) = kem(t) + iwiixj(t)’ (10)
Git+1) = ki) - c:;l(t) + b, (11)

fly) = 2 12)

1+exp(-y/e) !

where x;(t) is the output of the ith neuron at discrete time
t, and n;(t) and ¢;(t) are internal states for feedback input to
the neuron from other neurons in the network and for re-
fractoriness of the neuron, respectively. The sigmoid func-
tion f(y) is the output function of the neuron. Equation
(12) is different from the sigmoid function used in Refs.[2]
and [1]. The reason is that each element of the stored pat-
terns used in this paper consists of binary vectors {+1, —1}.
Therefore, the output function has to be chosen so that the
chaotic neuron takes values from —1 to +1. The parame-
ter e determines the steepness of the sigmoid function and
affects the sensitivity of firing. The parameters k¢ and k;
are the decay constants of n; and ¢j, respectively. The pa-
rameter « is a refractory scaling parameter. A denotes an
external input to the chaotic neuron. All chaotic neurons in
the network have a common value of A in this study. The
parameters w;j are synaptic weights (to the ith chaotic neu-
ron from the jth one), and b is the bias of the ith chaotic
neuron.

4. Proposed method

4.1. Determination of the connection coefficients and
the bias by SVM

Using an SVM for determining synaptic weights to store
patterns can be seen as a classification problem of the N
unit with training data (x™, x™) (for, m = 1, ..., M), where
x™ € (-1,+1}, i = 1,...,N) represents the class label for
the input x™. We can solve each of these N pair classifica-
tion problems by using an SVM. The synaptic weight vec-
tor w and the bias b that distinguishes stored patterns can
be obtained by performing the above operation N times.
Here, it should be noted that the size of the synaptic weight
matrix w, which is obtained using a linear SVM for storing
patterns, is N x N, while the one obtained using a nonlinear
SVM is N x M. Therefore, we rewrite Eq. (10) for updating
ni of the chaotic neuron as follows:

M
nit+ 1) = kemi(t) + Z WK (x™, x(1)).

m=1

(13)
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The difference between the matrix sizes of linear and non-
linear SVMs is caused by the fact that the nonlinear SVM
uses a kernel function K(-). Using the kernel function en-
sures that a stored pattern whose separation plane is non-
linear can be embedded into W and b.

4.2. Structure of proposed dynamical associative net-
work

We show the structure of our model in Figure 1. The first
layer is the input layer which transfers the input pattern to
the second layer. The second layer is the kernel function
layer. The boldface 1 in Figure 1 represents the fact that all
the synaptic weights from the input layer to the kernel func-
tion layer are fixed at one. The kernel function layer com-
putes a measure of similarity between the input pattern and
each stored pattern. These measures of similarity are given
by K(xD,x(t), KX, x(t)), ..., KM, x(t)). The third
layer is the output layer, which consists of chaotic neurons.
Furthermore, there is feedback from the output layer to the
input layer in order to repeat the retrieval process. The
matrix W of synaptic weights between the kernel function
layer and the output layer is an N x M matrix whose ele-
ments are determined by W™ = o{™y™_ The bias value
of the output layer is denoted by B = [by, by, ..., bn].
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Figure 1: Dynamical associative memory using a nonlinear
support vector machine.

5. Numerical experiments

To investigate retrieval characteristics of recall and tran-
sition frequencies of the proposed associative memory
model, we prepare ten sets of four stored patterns (M = 4)
as shown in Figure 2. Each stored pattern used in this study
has a size of 100 pixels (N = 100). The stored patterns are
random pattern whose number of firing is varying from 49
to 60. The black and white rectangles denote firing (+1)
and resting (—1), respectively.
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Figure 2: The stored patterns.

In addition, the patterns are generated so that they have
certain amount of correlation between them. These cor-
relations are as follows; Correlation coefficients between
Pat.(a) and Pat.(b), between Pat.(a) and Pat.(c), and be-
tween Pat.(a) and Pat.(d) are set to 0.1, 0.2, and 0.3, re-
spectively. Moreover, correlation coefficients of between
Pat.(b) and Pat.(c), and between Pat.(a) and Pat.(c) are set
to 0.3, and 0.2, respectively. Lastly, correlation coefficient
of between Pat.(c) and Pat.(d) is set to 0.1.

At the beginning of numerical experiments, the synaptic
weights and biases are determined by the nonlinear SVM
from the stored patterns. Then, we carry out simulation of
the dynamical associative memory for 150000 iterations.
To avoid the influence of a transient phase, the number of
recalls in the first 100000 iterations is not counted. The ex-
periment is carried out for the dynamical associative mem-
ory for with in 50000 iterations with 100 initial input pat-
terns and computed the average recall and transition fre-
quencies of the stored patterns for these 100 trials. In ad-
dition, to count the recall and transition frequencies of the
stored patterns, the output values of the chaotic neurons
are binarized with a threshold of 0.5. The parameter values
of the chaotic neurons are set to ks = 0.533, k, = 0.826,
a = 0.54, and e = 1.566. In addition, the standard devi-
ation of Gaussian kernel function is set to o = 15. The
average number of recalls of each stored pattern set and the
value of external input A are shown in Table 1. The external
input A in Table 1 are chosen so that the numbers of recalls
of all the stored patterns are almost the same among the sets
of stored patterns and the dynamics of the proposed model
shows the orbital instability. From Table 1, we see that the

Table 1: The average number of recalls.

Pattern A Pat.(a) Pat.(b) Pat.(c) Pat.(d)
setl -0.011 9035 9442 8983 846.4
set2  -0.001 8874 8905 891.1 900.8
set3  -0.427 962.3 838.9 1331.8 12675
set4  0.014 1384.7 1390.8 14389 1447.7
sets -0.0055 901.7 910.7 886.9 887.6
set6  0.009 1403.2 14425 14026 1435.6
set7 -0.0035 1401.4 14335 1570.2 1600.4
set8  0.015 14350 14542 14055 1387.6
set9 0.018 7684 780.8 758.0 722.1

setl0  0.083 14829 1465.2 1407.7 14342

proposed model recalls all the stored patterns with almost
the same frequencies for all stored pattern sets. Then, we
show the average of frequencies of transitions among re-
called patterns and transition intervals among them. The
frequencies of the transition intervals are evaluated by the
following standardization:

T-T
oT

S =

(14)

where s denotes standardized value of frequencies of the
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Figure 3: The standardized frequencies of the transitions
interval(for correlation coefficient of 0.1).

transition intervals, T denotes frequencies of the transition
intervals, T and o1 are the average value and standard de-
viation of T, respectively. The average numbers of transi-
tions among recalled patterns for the stored pattern set6 are
shown in Table2.

Table 2: The average numbers of recall transitions among
recalled patterns.

o T0 | pat(a) | Pat(b) | Pat(c) | Pat.(d)
Pat (@) 411 | 22416 | 22962 | 12707
Pat(b) | 219.32 | 624 | 1344 | 235.28
Pat.(0) 2773 | 12564 | 525 | 2242
Pat.(d) 1342 | 23922 | 21307 | 547

There is dispersion in the transition frequencies between
pairs of patterns, however we see that the transitions of ev-
ery combination of stored patterns were occurred. In ad-
dition, The standardized frequencies of the transition in-
tervals for the case of correlation coefficient of 0.1 and
0.3 among stored patterns are shown in Figs, respectively.
Upper left panel of Figure 3 shows the standardized fre-
quencies of the transition intervals from Pat.(a) to Pat.(b).
Upper right, lower left, and lower right panels in Figure 3
show the same ones from Pat.(b) to Pat.(a), is the same one
from Pat.(c) to Pat.(d), and from Pat.(d) to Pat.(c), respec-
tively. Figure 4 is the same figure as in Figure 3 but with
the correlation coefficient of 0.3. As in the case that the cor-
relation coefficient is 0.1 between stored patterns, the tran-
sitions of all the stored occur in 6-10 iterations as shown
in Figure 3. In particular, we find that the proposed model
tends to transit the stored patterns in 8 iterations. As in the
case that the correlation coefficient is 0.3 between stored
patterns, the transitions of all the stored occur in 29-32 it-
erations as shown in Figure 4. As in the case of Figure 3,
the proposed model tends to transit specific iterations in
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Figure 4: The standardized frequencies of the transitions
interval(for correlation coefficient of 0.3).

the case of Figure 4. It seems that the model has specific
periods to be a period for recall transition even the model
shows orbital instability. This periodicity of recall transi-
tion is also observed for other stored pattern sets.

6. Conclusions

We construct a dynamical associative network by deter-
mining the synaptic weights W and the biases B of asso-
ciative chaotic neural networks with a nonlinear SVM. We
investigate retrieval characteristics of recall and transition
frequencies of the stored patterns with considering corre-
lation between them. As for the proposed model, it be-
came clear that recall transition shows specific periods even
the network shows orbital instability. A future problem is
to investigate retrieval characteristics for lager the size of
network with changing the correlation coefficient between
stored patterns.
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