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Abstract– In this paper, we propose a novel image 
resolution enhancement technique based on the 
interpolation of high-frequency components of discrete 
wavelet transform (DWT). The low-resolution (LR) image 
whose resolution is to be enhanced is decomposed into 
four subbands by DWT on the basis of lifting method. 
Then only the high frequency subbands are interpolated 
with magnified factor  by using cycle spinning cellular 
neural network (CS-CNN). The CS-CNN is particularly 
well-suited for solving nonlinear optimization problems 
defined in space such as image processing tasks. In our 
algorithm, a directive architecture using a CS-CNN is 
developed to prevent the unnecessary smoothing of image 
detail. While a discrete-time cellular neural network (DT-
CNN) transforms all high-frequency subbands of LR 
image into coefficients   to predict the original subbands of 
high-resolution (HR) image using the A-template, the 
directive cycle spinning method is applied to estimate the 
optimal coefficients from individual outputs of the DT-
CNN as above. Experimental results indicate that the 
proposed method produces better results than the 
conventional image resolution enhancement methods. 
 
1. Introduction 
 

Image resolution enhancement is a method to increase 
the number of pixels for generating a high-resolution (HR) 
image from its low-resolution (LR) version. It has been 
widely used in many image-processing applications such 
as super resolution, 4K TV, high-quality printing, medical 
imaging, and so on. Recently, image resolution 
enhancement methods in the wavelet domain have been 
discussed in many papers [1]-[3]. In wavelet based 
techniques, it is assumed that the LR image whose 
resolution is to be enhanced is a lowpass-filtered and 
decimated HR image. These methods are based on 
wavelet-domain zero padding (WZP) [1]. The WZP sets 
the LR image to a low-frequency subband of a discrete 
wavelet transform (DWT) and high-frequency subbands 

are composed of all-zero matrices, then the interpolated 
image is reconstructed by an inverse DWT (IDWT). 
Moreover, there are many algorithms to estimate the 
preserved high-frequency information from the given LR 
image. For example, Woo et al. utilize the statistical 
relationship between coefficients at lower level, and it is 
modeled by using a hidden Markov model [2]. Adaptive 
Learning for Zooming (ALZ) [3] proposed by Battiato et 
al. improves the details in the HR image by using the local 
gradient estimation. 

In this paper, we propose a novel image resolution 
enhancement technique based on the architecture of a 
discrete-time cellular neural network (DT-CNN) with an 
arbitrary magnification parameter. The DT-CNN has been 
applied to many applications such as image compression, 
filtering, and recognition [4][5]. In our previous work, we 
showed that effective interpolation can be obtained using 
the DT-CNN with a cycle spinning (CS) architecture (CS-
CNN). However, in the conventional CS architecture, 
applying all possible shifts within a local neighborhood 
causes the unnecessary smoothing of image detail 
especially around edges. In this work, we extended the 
CS-CNN prediction to prevent over-smoothing. 
 
2. Basic Cycle Spinning Cellular Neural Network 
 
2.1. Cycle Spinning Technique 
 

Figure 1 shows a block diagram of the CS process. The 
CS considers a range of shifts and is set as 

  HhxSTSy hh   ,))((Ave              (1) 

where x is an input signal, y is an output signal, Sh is a 
shift operator, S-h is an unshift operator, and T is an 
analysis technique. H and h are the range of shifts and the 
shift value, respectively. First, the CS shifts the data, then 
it transforms the shifted data, and then it unshifts the 
transformed data. After repeating this for the range of 
shifts and averaging the results, denoised signal data is 
effectively obtained. 
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Figure 1: Cycle spinning process 
 
2.2. DT-CNN 
 

Figure 2 shows a block diagram of the DT-CNN. The 
state equation of the DT-CNN is described in matrix form 
as 

TBuxΑfx  )(1 nn                      (2) 

where u is an input vector, x is a state variable, f( ) is an 
output function, A and B are feedback and feedforward 
template matrices, and T is a constant vector, respectively. 
Let y=f(x), then the energy function E of the DT-CNN is 
defined as Lyapunov energy function. 

yTBuyyIAy tttE  )(
2

1           (3) 

  ,,diag ID                   (4) 

where δ is a positive constant value used to determine the 
slope at a linear region of the output function. As 
described in [4] and [5], if the following conditions for the 
A-template are satisfied, it can be proved that the 
Lyapunov energy function E becomes a monotonically 
decreasing function. 

),;,(),;,( jilkAlkjiA                     (5) 

0),;,( lkjiA                            (6) 

 

 
 

Figure 2: Discrete-time cellular neural network 
 
2.3. CS-CNN 
 

Figure 3 shows a block diagram of the CS-CNN. The 
state equation of the CS-CNN is described as 

 TBuxfΑx   )()(Ave1 nddn SS       (7) 

where Sd is a shift operator that applies horizontal and 
vertical shifts of (k, l), for example, (k-d, l), (k+d, l), (k, l), 
(k, l-d), and (k, l+d). d is the shift value of CS and S-d is 
the unshift operator. This means that the center point of 
the A-template is shifted in each direction (vertical and 
horizontal) by the shift operator, and then, averaging over 
each unshifted convolution results in a shift in the A-
template. 

 

 
 

Figure 3: Cycle spinning cellular neural network 
 
3. Subband Interpolation Using Directive CS-CNN 
 

In the proposed method, subband images are 
interpolated using the two-layered CS-CNN with directive 
architecture. In the first layer of the CS-CNN, in order to 
obtain high prediction accuracy for subband images, it is 
necessary that the image can be reconstructed on the basis 
of the distortion function defined by 

)(
2

1
),cost( uGyyuy  t                      (8) 

where ||.|| is the Euclidean norm and G is a Gaussian filter. 
This cost function means that not only the output ||y|| but 
also the difference between the interpolatively predicted 
subband image Gy and the input subband image u should 
be small. By the comparison between eqs. (3) and (8), the 
A-template, B-template, and threshold T can be 
determined as 
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where σ is the standard deviation of the Gaussian function 
and λ is a regularization parameter. The B-template is only 
nonzero at the center value. 
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In our proposed method, directive architecture using a 
CS-CNN is developed. Figure 4 shows the shift patterns 
used for different directional CS-CNN. In order to prevent 
the over-smoothing, horizontal and vertical shift patterns 
are applied to wavelet decomposed LH and HL subband 
images, respectively. When the shift operator Sd is applied 
horizontally, such as (k-d, l), the A-template can be 
calculated by 
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The other A-templates with different types of shift are 
calculate in the same manner. Then we can represent the 
dynamics of the first layer of the CS-CNN by using the 
above parameters as follows. 
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where Nr(i, j) is the r-neighborhood of cell C(i, j), 
expressed as Nr(i, j)={ C(k, l) | max{ | k - i |, | l - j | } ≤ r}. 
xij(t), yij(t), and uij indicate the internal state, the output, 
and the input of cell C(i, j), respectively. The output 
function f( ) corresponds to a piecewise linear function. 
The subband image is set to uij and the equilibrium output 
ye

ij is obtained after the transition of the network. 
Next, the output of the first layer of the CS-CNN 

becomes the input of the second layer of the CS-CNN, 
which has no dynamics, and the output of the second layer 
of the CS-CNN provides the predicted value. The pixel of 
the input image with coordinates (i, j) is mapped to the 
pixel (i´, j´) of the resolution enhanced image. Let dm be 
an enlargement parameter, then the relationship between 
pixels (i, j) and (i´, j´) is determined as (i´, j´)=(idm, jdm). A 
deficient pixel of the enlarged image with coordinates (k, 
l) is obtained using 
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The image enhancement is composed of horizontal 
process and vertical processes, as shown in figure 5. At 
the vertical resolution enhancement stage, we use the v B̂ -
template, which is obtained by extending the A-template 
of the first layer of the CS-CNN vertically, that is, 
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In the same manner, at the horizontal resolution 
enhancement stage, we use the h B̂ -template, which is 
obtained using 
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Figure 4: Directional shift patterns 

 

 
(a) Vertical enlargement 

 

 
(b) Horizontal enlargement 

 
Figure 5: Image enlargement at each stage 

 
4. Proposed Image Resolution Enhancement System 
 

The deterioration of the resolution enhanced image is 
caused by the smoothing, that is, a general lack of high-
frequency components. Accordingly, in order to improve 
the performance of resolution enhancement method, the 
prediction of the edges is absolutely imperative. Figure 6 
shows the block diagram of the proposed image resolution 
enhancement system. When the input image size is MN, 
the subband image size becomes M/2  N/2. Here, we 
assume that the high frequency subbands include the 
survived lowpass-filtered edge information of HR image. 
Next, a directive CS-CNN is applied to high-frequency 
subbands with magnified factor .  
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Figure 6: Proposed resolution enhancement system 
 

As a result, we obtain the interpolated high frequency 
subbands (LHx, HLx, and HHx) with the size of 
M/2N/2. These interpolated subbands are set to high 
frequency subbands of DWT for reconstruction of the HR 
image. Instead of the LL subband, which includes less 
high frequency information than the input LR image, we 
exploit the input LR image to predict the lowest frequency 
subband of DWT (LLx) for reconstruction. The input LR 
image is interpolated by CS-CNN with the half of the 
magnified factor /2, then, the interpolated LLx is set to 
the lowest frequency subband. Finally, HR image is 
obtained by applying the IDWT to the interpolated 
subbands, LLx, LHx, HLx, and HHx. 
 
5. Experimental Results 
 

In this section, we evaluate proposing novel image 
resolution enhancement algorithm using directive CS-
CNN. We applied our system to the 8-bit gray-scale 
standard test images; Lena, Elaine, Sailboat, and Harbor. 
The HR version of these images with the size of 512512 
is used as the ideal interpolated image for performance 
evaluation purpose. These images are lowpass-filtered and 
downsampled to provide the LR images used for image 
enhancement. 

The LR image is decomposed by lifting-based DWT 
using the well-known Le Gall 5/3 tap filter. The high 
frequency subbands are interpolated with magnified factor 
 and the LR image is also interpolated with magnified 
factor /2 independently by using directive CS-CNN 
interpolation. Then the HR image is obtained by applying 
the IDWT to interpolated subband images. 

The performance of the proposed method was 
compared with that of the bilinear interpolation algorithm 
(BL), the bicubic interpolation algorithm (BC), and the 
conventional DT-CNN method (CNN). For the simulation, 
each parameter was decided experimentally; the standard 
deviation of the Gaussian was σ=0.6, the r-neighborhood 
of the cell was r=2, and the shift value of the cycle 
spinning was d=0.15. To enable a comparison with the 
resolution enhancement performance of WT, the 
enlargement parameter was set to =2. 

Table 1 shows the results for the peak signal-to-noise 
ratio (PSNR) values between the original images and 

enhanced images. Our results show that the proposed 
directive CS-CNN outperforms the conventional methods. 
 
 
Table 1: PSNR (dB) results for 2  enlarged images (from 
256256 to 512512). 

Method/Image Lena Elaine Sailboat Harbor

BL 30.13 30.60  27.89 23.56 

BC 31.34 31.17  29.18 24.01 

CNN 32.15 31.82  29.25 24.12 

Proposed 33.58 32.69  29.76 24.27 
 
 
6. Conclusions 
 

A new image resolution enhancement method operating 
in the wavelet domain was proposed. The main elements 
of this algorithm were the wavelet zero-padding based 
resolution enhancement and the modeling of the high 
frequency wavelet subbands by using the directive CS-
CNN. The experimental results show that our proposed 
method consistently has better or competitive 
performances compared with conventional resolution 
enhancement methods. 
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