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Abstract—Recurrence plots are widely used for
analysing time series generated from complex systems.
While it is argued that the tau-recurrence rate is similar to
the autocorrelation, it is still not clear which characteristics
within recurrence plots represent their linear and nonlinear
properties. In this paper, we observe how fast the num-
ber of diagonal lines decreases when their length increases.
We found that in linear stochastic systems, the logarithm of
the number scales exactly, while in typical nonlinear deter-
ministic systems, the decreasing rate of the number tends
to approach from the above. We illustrate our finding with
numerical examples.

1. Introduction

Nonlinear time series analysis [1, 2, 3] has been devel-
oped for the last three decades. Among various methods,
recurrence plots [4, 5] have been intensively investigated
for the last two decades.

Recurrence plots visualize given time series. Recurrence
plots are two-dimensional graphs both axes of which rep-
resent time. For a pair of two times, if the corresponding
states are similar, then one plots a point at the correspond-
ing place. Otherwise, one plots nothing. Due to the simple
definition, we can extend recurrence plots to marked point
processes [6]. Recent trends in recurrence plots are their
quantifications, which are called Recurrence Quantification
Analysis (RQA) [5]. Quantities that characterize vertical
and horizontal lines in recurrence plots were proposed. Us-
ing these quantities, the properties of given time series can
be characterized from various viewpoints.

Although recurrence plots were studied well, it is still
not clear which characteristics represent linear and nonlin-
ear features of given time series within a recurrence plot.
There is a paper by Zbilut and Marwan [7] that showed the
tau-recurrence rate is similar to the autocorrelation, which
characterizes linear stochastic systems.

In this paper, we show that the distribution of the diag-
onal line length of recurrence plots can distinguish linear
stochastic systems from nonlinear deterministic systems.
In linear stochastic systems, the logarithm of the number of
the diagonal line length scales even if the length of the di-
agonal line is short. On the other hand, in typical nonlinear
deterministic systems, the decreasing rate of the number
tends to converge from the above.

The rest of the paper is organized in the following way.
In Section 2, we introduce recurrence plots and their quan-

tifications. In Section 3, we present numerical examples
showing that the distribution of diagonal line length is dif-
ferent between linear stochastic systems and nonlinear de-
terministic systems. In Section 4, we apply our finding to a
dataset of squid giant axon. In Section 5, we conclude the
paper.

2. Recurrence plots and their quantifications (RQA)

Let xi ∈ R
m (i = 1,2, · · · , n) be a point of a time series at

time i. Let d : Rm
× R

m
→ R be a distance function. Here

we use the Euclidean distance. A recurrence plot is defined
as

R(i, j) =

{

1, if d(xi, x j) < ǫ,
0, otherwise.

(1)

WhenR(i, j) = 1, a point is plotted at (i, j). If R(i, j) = 0,
nothing is plotted at (i, j). It is demonstrated that from
recurrence plots one can reproduce rough shapes of the
original time series [8, 9]. In fact, it was shown that if
two recurrence plots are the same, then the corresponding
dynamics are equivalent [10]. By using recurrence plots,
driving forces affecting observed elements can be recon-
structed [14]. Therefore, recurrence plots are good meth-
ods for describing and analyzing time series.

Recently recurrence plots are applied to identify network
topology from time series [11, 12, 13].

A good point of recurrence plots is that we can under-
stand the characteristics of dynamics from the patterns of
the plotted points. For example, from white noise, we can
obtain a recurrence plot in which points spread uniformly
randomly. From a periodic time series, we can obtain a
recurrence plot in which diagonal lines are running in par-
allel with an equal space. As for a time series generated
from a deterministic system, the corresponding recurrence
plot contains short diagonal segments of lines. Therefore,
diagonal lines characterize the determinism of given time
series.

On the other hand, vertical and horizontal lines appear
when a point in a time series tends to stay in a particular
state in phase space.

There are various quantities characterizing plotted pat-
terns of points in recurrence plots. Analysis calculating
these quantities is called Recurrence Quantification Anal-
ysis (RQA). The quantities of RQA can be classified into
two groups [5]: One of the groups characterizes the distri-
bution of diagonal lines. Letc(l) be the number of diagonal
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lines with at least lengthl in a recurrence plotR. This c(l)
can be calculated as

c(l) =
n
∑

i, j=1

l−1
∏

k=0

R(i + k, j + k). (2)

It is known that from the asymptotic decreasing rate ofc(l),
one can estimate the correlation entropy [15].

In the next section, we look at the distribution of diago-
nal line lengthc(l) closely.

3. Distribution of diagonal line length

We investigate the distribution of diagonal line length for
the following four models.

The first model is the first order autoregressive linear
model:

x(t) = −0.7x(t − 1)+ ηt, (3)

whereηt is the Gaussian distribution of the mean 0 and the
standard deviation 1.

The second model is the 100th order autoregressive lin-
ear model:

x(t) =
100
∑

i=1

aix(t − i) + ηt. (4)

We choseai from the Gaussian distribution of the mean
0 and the standard deviation 0.052 so that the system be-
comes stable.

The third model is the Ikeda map:
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(5)
We usex(t) as a scalar time series.

The fourth model is the R̈ossler model:

d
dt
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We usedu(t) sampled every 1 as a scalar time series.
We used the absolute distance for calculating distances.

We also chose thresholds so that the recurrence rates be-
came 0.05.

The results are shown in Fig. 1. In the case of linear
stochastic systems, the logarithm of the number of the diag-
onal line length scales almost exactly, while in the nonlin-
ear deterministic systems, the decreasing rate of the num-
ber tends to converge from the above.

We showed analytically that in stationary ergodic linear
stochastic systems, the logarithm of the number of the di-
agonal line length scales even if the line length is short. On
the other hand, in nonlinear deterministic systems whose
dimension is more than 1, due to the effects of false nearest
neighbors [16], the deceasing rate of the number tends to
converge from the above.
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Figure 2: The diagonal line length distribution for the squid
giant axon data. The error bars were obtained using the
bootstrap method [19]. The broken line was obtained by
fitting the logarithms of the counts for lengths 1 and 2.

4. Application to squid giant axon

We applied our finding to the dataset of squid giant
axon [17, 18]. This dataset is an ideal example of deter-
ministic chaos since the Lyapunov exponent obtained from
various methods [17] matches the metric entropy estimated
using symbolic dynamics [18].

We obtained a recurrence plot of the dataset using a
threshold such that the recurrence rate is 0.05. The diago-
nal line length distribution of this dataset is shown in Fig.2.
Since the length of time series is short, we cannot obtained
the error bars by using different time series as we did in
Fig. 1. Therefore, instead, we obtained the error bars by us-
ing bootstrapping the diagonal line length distribution [19].
We can see that the distribution of the diagonal line length
is different from that of linear stochastic systems.

5. Conclusion

In this paper, we have shown that the diagonal line length
distribution is different from linear stochastic systems with
typical nonlinear deterministic systems. In linear stochas-
tic systems, the logarithm of the number of diagonal line
length scales even if the line length is short. On the other
hand, in nonlinear deterministic systems, the decreasing
rate of the number of diagonal line length tends to con-
verge form the above. As for the actual squid giant axon
dataset, we found that it is different from linear stochastic
systems. The proposed method is simpler than the other
existing methods for testing nonlinearity such as ones us-
ing time-reversibility [20] and the Fourier transform-based
surrogate data [21, 22]. Therefore, we believe that it will
contribute to advancements of nonlinear science.
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Figure 1: The distribution of number of diagonal line length. (a) the first order autoregressive linear model. (b) the 100th
order autoregressive linear model. (c) the Ikeda map. (d) the Rossler model. The error bars were obtained by using 20
different realizations of time series generated from different initial conditions. The broken line was obtained by fitting the
means of the logarithms of the numbers for lengths 1 and 2.
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