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Abstract— Estimating and controlling nonlinear neuronal
system are crucial for understanding the neuronal system
and brain functions. However, it is challenging to deter-
mine appropriate time-series input for the nonlinear system
including unobservable state and unknown dynamics. We
propose a framework for estimating and controlling an in-
dividual neuron by leveraging the sequential Monte Carlo
method. For estimating the hidden state and its dynam-
ics, we derive an online algorithm based on the sequential
Monte Carlo method and the expectation-maximization al-
gorithm. In addition, we constitute the feedback control
law by employing the Monte Carlo method based model
predictive control. We verify the effectiveness of the pro-
posed method using simulation environments. The results
suggest that with the proposed method we can simultane-
ously estimate the latent variables and the parameters and
control neuronal state toward the desired firing pattern.

1. Introduction

Estimating and controlling nonlinear neuronal system
are crucial for understanding the neuronal system and brain
functions [1, 2]. However, it is still challenging to con-
stitute a feedback control law for neurons since we can-
not directly observe neuronal multi-dimensional state; we
can only obtain a part of the entire neuronal activities. For
instance, only noisy membrane potentials are observable
[3, 4, 5]. Therefore, it is essential to establish a method
for simultaneously estimating and controlling the nonlinear
neuronal dynamics from only noisy membrane potentials.

To control the neurons, it is required to have accurate in-
formation about the state and the dynamics of the neurons.
Some methods have been proposed to estimate the state and
the dynamics of the neurons from lower dimensional obser-
vation data based on the statistic machine learning [6, 7].
A previous method has been proposed to control neurons
based on the modern control theory [8]. However, many
previous works assume either the state or the dynamics to
be known. This is unrealistic assumption in neuronal sys-
tems, since several neuron models, like the Morris-Lecar
model [9], have unobservable latent variables. Moreover,
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Figure 1: The overview of the proposal method

imaging technique provides only lower dimensional vari-
ables compared with high dimensional latent variables. In
this study, we propose a statistical machine learning based
framework for simultaneously estimating and controlling
the nonlinear individual neuronal state and dynamics under
a realistic situation where only noisy membrane potentials
can be obtained. We focus on a probabilistic framework to
estimate and control neuronal dynamics, in particular, the
state-space model and the sequential Monte Carlo (SMC)
method as well as model predictive control theory. In or-
der to verify the effectiveness of the proposed method, we
estimate and control the neuron model under simulation en-
vironments.

2. Proposed Method

We propose a statistical machine learning based frame-
work for estimating and simultaneously controlling the
nonlinear dynamics of individual neurons. The overview
of the the framework is shown in Fig. 1. Our method con-
sists of three parts; (A) estimating the filtering distribution
of the hidden state from partial observation data, (B) es-
timating the parameter governing the neuronal dynamics,
(C) formulating the optimal control problem as a Bayesian
statistic problem.
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2.1. Morris-Lecar Neuron Model

Here we formulate a nonlinear state-space model based
on the Morris-Lecar neuron model. The Morris-Lecar neu-
ron model is defined as follows:

Cm
dv
dt′ = −gL(v − EL) − gCam∞(v)(v − ECa)

−gKn(v − EK) + I,
dn
dt′ = −ϕ cosh

(
v−V3
2V4

)
(n − n∞(v)),

(1)

where t′ means continuous time, v is a membrane voltage,
n is a normalized channel variable, and I is an applied
current. m∞(v) and n∞(v) are nonlinear functions. The
Morris-Lecar model can be expressed by the state vector
x =

[
v n
]T

and the parameter θ =
[
gL gCa gK

]T
as

follows:

dx
dt′
= f (x, I; θ) =

 1
Cm

(I − Vion(x)T θ)
−ϕ cosh

(
v−V3
2V4

)
(n − n∞(v))

 , (2)

where Vion(x) =
[
v − EL m∞(v)(v − ECa) n(v − EK)

]T
.

Here, we derive system model and observation model
for the state-space model. At first, we discretize the
continuous-time model given by Eq. (2) with the time step
∆t. Then, we consider a fluctuating system noise governed
by an additive Gaussian noise. The system model of the
state-space model is formulated as follows:

p(xt+1 | xt, It, θ) = N(xt+1 | xt + f (xt, It; θ)∆t,Σx), (3)

where t denotes a discrete time index, xt the state value at
time t′ = t∆t, respectively.

Next, we consider the observation model for the state-
space model. We assume we can obtain only a one-
dimensional time series of noisy membrane potentials
{yt}t≥0. By introducing the additive Gaussian noise with
its variance σ2

y ∈ R, we formulate the observation model of
the state-space model as follows:

p(yt | xt) = N(yt | vt, σ
2
y). (4)

2.2. Sequential Monte Carlo Method for Estimating
Latent State

To estimate the latent state xt from noisy time-series
membrane potentials Yt = {y1, y2, . . . , yt} online, we apply
the sequential Monte Carlo (SMC) method [10].

Here, we consider estimating the latent state xt by using
predictive distribution p(xt |Yt−1) and the filtering distribu-
tion p(xt |Yt). In the SMC method, both distributions are
approximated by using particles, which represent the value
of the latent state. The SMC method is divided into two
steps; the prediction step and filtering step.

In the predictive step, we sample the particles with the
system model Eq. (3) as follows:

x(i)
t ∼ p(xt | x

(i)
t−1, It−1, θ) for i = 1, . . . ,N, (5)

where i is the index of the particle and N is the number of
the particles. In the filtering step, by using the observation
model Eq. (4), the particles are resampled with a proba-
bility proportional to their weights w(i)

t . Here, the weight
of i th particle w(i)

t is obtained by w(i)
t = p(yt | x

(i)
t ). By

using resampled particles, we obtain an approximated fil-
tering distribution as follows:

p(xt |Yt, θ) ≈
1
N

N∑
i=1

δ(xt − x(i)
t ), (6)

where δ(·) is a Dirac’s delta function. The obtained par-
ticles {(x(i)

t ,w
(i)
t )}Ni=1 also are used not only to estimate the

parameters in section 2.3, but also to constitute the feed-
back law introduced in section 2.4.

2.3. Online EM Algorithm for Estimating Model Pa-
rameter

To estimate the model parameter θ online, we adapt the
original offline-based expectation-maximization (EM) al-
gorithm into an online one with the SMC.

In our study, we consider the parameter θk is updated at
times {k × Tinterval}k=1,2,···, where k represents the renewal
number and Tinterval denotes the interval of the update time.
In addition, the expectation with respect to the previous pa-
rameter θk−1 is replaced with the filtering distribution ob-
tained online via SMC. The procedure is summarized:

θ̂k = arg max
θ

E
[
log p(Ywin(t), Xwin(t) | θ)

]
SMCwin(t)(θk−1), (7)

θk = (1 − ηk)θk−1 + ηkθ̂k, (8)

where Xwin(t) = Xt−L(t):t, SMCwin(t)(θk−1) =

p(Xwin(t) |Ywin(t), θk−1) is the filtering distribution ob-
tained in section 2.2, 0 < ηk < 1 is a number that satisfies
ηk → 0 as k → ∞, L(t) is a window function.

2.4. Model Predictive Control Driven by the Sequential
Monte Carlo Method

To constitute the feedback control law under a practical
situation where the state and the parameters are unknown,
we combine the SMC method-based model predictive con-
trol (SMC-MPC) [11] with our dynamics estimator. Note
that the conventional methods [11] assumed either the state
or the dynamics to be known. In the SMC-MPC, the op-
timal control problem for the naive MPC is replaced with
a filtering problem based on the state-space model. First,
to formulate the filtering problem, we define the extended
system model in the horizon. We consider the control input
It is regarded as the part of the extended state ζt = (xt, It, Ĩt),
where Ĩt is a dummy input to preserve the initial control in-
put. Hence we formulate the extended system model in the
horizon as follows:

xτ+1 ∼ p(xτ+1 | xτ, Iτ; θ),
Iτ+1 ∼ p(Iτ+1 | ζτ), It ∼ p(It | It−1),
Ĩτ+1 = Ĩτ, Ĩt = It,

(9)
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where τ ∈ {t, t + 1, . . . , t + TH} is the discrete time in the
horizon and TH is a length of the horizon. In our study,
the control input transition p(Iτ+1 | ζτ) and the initial distri-
bution for the control input p(It | It−1) are designed to en-
sure that the input time-series {It, . . . , It+TH } always remain
within a certain range.

Next, we formulate the extended observation model in
the horizon. We consider controlling the state towards
the given reference state trajectory {rτ}

t+TH
τ=t . In the SMC,

we regard the reference trajectory as a realization of the
Markov chain with the extended system model in the hori-
zon. Therefore, we formulate the extended observation
model (referred as a setpoint equation in [11]) as follows:

rτ ∼ p(rτ | ζτ) = N(rτ | xτ, σ2
r ), (10)

where σ2
r is a variance which adjusts an acceptable error

against the reference trajectory.
To solve the filtering problem defined by Eqs. (9) and

(10), we apply the SMC method with given observation
data {rτ}

t+TH
τ=t . Here, to initialize the extended particles

{ζ(i)
t ,w

(i)
t }

N
i=1, we use the state particles {(x(i)

t ,w
(i)
t )}Ni=1 ob-

tained via the state estimation. After applying the SMC
method in the horizon, we obtain the filtered extended
particles {ζ(i)

t+TH
,w(i)

t+TH
}Ni=1. By extracting the dummy in-

put particles inheriting initial inputs and their weights
{Ĩ(i)

t+TH
,w(i)

t+TH
}Ni=1, we obtain the point estimation of this fil-

tering distribution, e.g.

I∗t =
1
N

N∑
i=1

Ĩ(i)
t+TH
. (11)

Finally, we adopt It = I∗t as the actual control input at time
t.

We have proposed an automatic control framework, even
if the state and the dynamics are unknown. Although the
conventional model predictive control (MPC) enables us to
handle even a nonlinear model, MPC requires the state and
the model to be known. The SMC-MPC [11] resolves one
side of this problem by combining the SMC method with
MPC effectively. However, they assumed that the model
dynamics to be known. The proposed method constitutes
the feedback control law by combining the SMC-MPC with
the state and the parameter estimators.

3. Experiment

3.1. Setting

We verify the effectiveness of our proposal method using
simulation environments. The true neuronal dynamics is
assumed to be the Morris-Lecar neuron model [12]. Here,
we assume multi-dimensional latent variables v and n, and
the conductances of ion channels gL, gCa, gK are unknown.
The reference membrane potentials are generated by using
the true model in advance. In practice, the constant current
influenced by other neurons exists. We consider that the

net input current I for the neuron consists of the constant
current I0 and the controllable input Iin, i.e. I = I0 + Iin.

3.2. Results

Fig. 2 shows the simulation result. Here, we verify
whether our proposal framework can estimate the neural
hidden state and its parameters from only noisy membrane
potentials, but also simultaneously control the membrane
potentials towards the desired ones. The upper left graph
shows the true membrane potential vtrue (blue line), the es-
timated one vest (orange dashed line), and the reference one
vref (green dotted line). We can see the estimated mem-
brane potential tracks the true value as time passes. Here,
the gray dash-dotted line represents the simulation result
if no input current is applied. By applying the proposed
method, the membrane potentials well tracks the time-
varying reference membrane potentials. The middle left
graph shows the true channel variable ntrue (blue line) and
the estimated value nest (orange dashed line). Note that n is
unobservable. We also find that the estimated value of the
channel variable tracks the true value.

Next, we clarify whether our method can estimate and
control the neuronal dynamics using feedback input cur-
rent with a limited range of strength. The lower left graph
of Fig. 2 shows the applied input current Iin (blue line),
the streaming current I0 (orange dotted line), and the limit
Ilim (gray dash-dotted line). Here, Iin is automatically cal-
culated by the proposed framework. We can see the sum of
the control and streaming current (green dashed line) sat-
isfy |Iin + I0| ≤ Ilim.

Finally, we clarify whether our method can estimate the
unknown parameters. The graphs on the right side in Fig.
2 show the estimated parameters and their true values. We
can see each estimated conductance value converges to the
true value as the online-adapted EM algorithm is applied.

Note that our method can successfully estimate and con-
trol other types of neuronal dynamics such as Hopf and ho-
moclinic bifurcations (data not shown), although only the
result for the SNLC parameter set [12] is shown here.

The result indicates that our proposed framework can si-
multaneously estimate the latent state and the parameters
and control the membrane potential towards the desired
ones, even if the conductances are unknown.

4. Conclusion

In this paper, we propose a statistical machine learning
based framework for estimating and controlling the neu-
ronal state and dynamics, and simultaneously controlling
the neuronal dynamics. We have shown that the proposal
method not only well estimates the multi-dimensional hid-
den state and the parameters of the neuron, but also suc-
cessfully control the membrane potentials towards the de-
sired ones under a partial observation situation. In the fu-
ture work, it would be important to consider the case where
the internal fluctuation is non-Gaussian or chaotic noise.
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Figure 2: Result for estimating and controlling neuronal dynamics by the proposed method. Left: membrane potential v,
channel variable n, and currents including control current. Right: membrane conductances gL, gCa, and gK .

Acknowledgments

This work was partially supported by Grant-in-Aid for
Scientific Research (B) (No. JP21H3509), and a Fund
for the Promotion of Joint International Research (Fos-
tering Joint International Research) (No. JP15KK0010),
MEXT, Japan, CREST (No. JPMJCR1914), JST, Japan,
and AMED, Japan.

References

[1] J. M. Shine, E. J. Müller, B. Munn, J. Cabral, R. J.
Moran, and M. Breakspear, “Computational mod-
els link cellular mechanisms of neuromodulation to
large-scale neural dynamics,” Nature Neuroscience,
Vol. 24, pp. 765–776, 2021.

[2] D. R. Chialvo, “Emergent complex neural dynamics,”
Nature Physics, Vol. 6, pp. 744–750, 2010.

[3] N. Vogt, “Voltage imaging in vivo,” Nature Reviews
Neuroscience, Vol. 16, pp. 573, 2019.

[4] K. Thomas and S. Chenchen, “Optical voltage imag-
ing in neurons: moving from technology development
to practical tool,” Nature Reviews Neuroscience, Vol.
20, pp. 719–727, 2019.

[5] D. S. Peterka, H. Takahashi, and R. Yuste, “Imaging
voltage in neurons,” Neuron, Vol. 69, pp. 9–21, 2011.

[6] T. Omori, “Estimating nonlinear spatiotemporal
membrane dynamics in active dendrites,” Neural In-
formation Processing, Vol. 8834, pp. 27–34, 2014.

[7] H. Inoue, K. Hukushima, and T. Omori, “Estima-
tion of neuronal dynamics of Izhikevich neuron mod-
els from spike-train data with particle Markov chain
Monte Carlo method,” Journal of the Physical Society
of Japan, Vol. 90, No. 10, pp. 1–12, 2021.

[8] S. Vaidyanathan, “Adaptive control of the FitzHugh-
Nagumo chaotic neuron model,” International Jour-
nal of ChemTech Research, Vol. 8, No. 6, pp.
117–127, 2015.

[9] C. Morris and H. Lecar, “Voltage oscillations in the
barnacle giant muscle fiber,” Biophysical Journal,
Vol. 35, No. 1, pp. 193–213, 1981.

[10] G. Kitagawa, “A Monte Carlo filtering and smoothing
method for non-Gaussian nonlinear state space mod-
els,” Proceedings of the 2nd U.S.-Japan Joint Semi-
nar on Statistical Time Series, 1993.

[11] D. Stahl and J. Hauth, “PF-MPC: particle filter-model
predictive control,” Systems and Control Letters, Vol.
60, pp. 632–643, 2011.

[12] G. B. Ermentrout and D. H. Terman, Mathematical
Foundations of Neuroscience. Springer, 2010.

– 528 –


	Introduction
	Proposed Method
	Morris-Lecar Neuron Model
	Sequential Monte Carlo Method for Estimating Latent State
	Online EM Algorithm for Estimating Model Parameter
	Model Predictive Control Driven by the Sequential Monte Carlo Method

	Experiment
	Setting
	Results

	Conclusion

