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Abstract—I.Daubechies et al. have shown that a new class of
unconventional analog-digital (A/D) converters, called β-encoder,
exhibits exponential accuracy in bit rates while possessing self-
correction property for fluctuations of amplifier factor β and
quantizer threshold ν. This paper gives optimal values of β and
ν to be designed with their unknown errors for given scale, bit
budget and tolerance of quantizer in the β-encoder. Futhermore,
a new A/D converter, called negative β-encoder, is introduced so
as to improve the variance of quantization error of β-encoder.

I. INTRODUCTION

Analog-to-digital (A/D) conversion is the basic technology
behind various technologies[1], [2], [3] for example, commu-
nications like software radio, audio and imaging, etc. Our main
concerns are its accuracy and stability.

The phases of A/D conversion consist of “sampling” and
“quantization”. Sampling is temporal discretization of signals.
The “sampling theorem” guarantees that the signal can be
completely reconstructed with sampled values. Quantization
is the process of encoding sampled values where quantization
error inevitably arises. The problems we focus on are how to
reduce the quantization error and guarantee the robustness to
the fluctuation of circuit components.

Pulse code modulation (PCM) is known as the A/D con-
verter where the quantization error attains the minimum.
Define a quantizer function Q1 by

Q1(x) :=
{

0, x < 1
1, x ≥ 1 (1)

The bit sequences bi, i = 1, 2, · · · can be calculated recur-
sively in the following algorithm. Let u1 := 2x; the first bit
b1 is then given by b1 := Q1(u1). The remaining bits are
calculated recursively; if ui and bi have been defined, we let
ui+1 := 2(ui − bi) and bi+1 := Q1(ui+1).

For x ∈ [0, 1), bit sequences {bi}L
i=1, L ∈ N are obtained

by iterating the Bernoulli shift map B(x) : [0, 1) → [0, 1)
defined by

B(x) := 2x mod 1 =
{

2x, x ∈ [0, 1
2)

2x− 1, x ∈ [ 12 , 1) (2)

and generating its bit sequence bi(i = 1, 2, · · ·) defined by

bi :=
{

0, Bi(x) ∈ [0, 1/2)
1, Bi(x) ∈ [1/2, 1). (3)

Hence we get BL(x) = 2Lx − ∑L
i=1 bi2L−i which yields

x =
L∑

i=1

bi2−i + 2−LBL(x). (4)

When L → ∞, the binary expansion of x has the form

x =
∞∑

i=1

bi2−i. (5)

However, if the threshold fluctuates, then the corresponding
map B′(x) is defined by

B′(x) :=
{

2x, x ∈ [0, 1
2 + δ)

2x− 1, x ∈ [ 12 + δ, 1), (6)

namely, B′(x) : [0, 1) → [0, 1+2δ) which implies that values
of PCM diverge so that PCM doesn’t have the robustness to
the fluctuation of the quantizer threshold.

The β-expansion as a basis of β-encoder is a classic of
ergodic theory [4], [5], [6], [7], [8], [9], [10]. Rényi[4] defined
the β-transformation: x �→ βx mod 1 for a real number
x ∈ (0, 1] and a real number β > 1. Gelfond[5] and Parry[6]
gave its invariant measure. Parry[7] defined the linear mod 1
transformation (or (β, α)-transformation, generalized Rényi
map): x �→ βx + α mod 1 for a real number x ∈ (0, 1]
and real numbers β > 1, 0 < α < 1 and gave its invariant
measure. Dajani[10] discussed the ergodic property of (β, α)-
transformation. The λ-expansion[11] has a close relationship
to β-expansion.

I.Daubechies et al. [12], [13], [14], [15] introduced an
A/D converter having the robustness to the fluctuation of the
quantizer threshold ν and the amplication factor β ∈ (1, 2),
called β-encoder as shown in Fig 1, where the quantizer Qν

with its threshold ν ∈ [1, (β − 1)−1] is defined by

Qν(x) :=
{

0, x < ν
1, x ≥ ν.

(7)

The β-encoder can perform rightly as far as ν ∈ [1, (β−1)−1)
even if the quantizer threshold ν fluctuates. The bit sequence
bi can be obtained recursively as follows. Let u1 := βx; the
first bit b1 is then given by b1 := Qν(u1). The remaining
bits are given recursively; if ui and bi have been defined, we
let ui+1 := β(ui − bi) and bi+1 := Qν(ui+1). So, the β-
encoder is regarded as a successful circuit realization of (β, α)-
transformation by setting ν − 1 = α[10].
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Fig. 1. β-encoder: With input z = x ∈ [0, 1); z = 0 for i > 0 and ”initial
conditions” u0 = b0 = 0, the output bn+1 of this block diagram gives the
β-expansion for x by using the quantizer Qν with ν ∈ [1, (β − 1)−1]. The
cases where ν = 1, (β−1)−1 are ”greedy” and ”lazy” schemes, respectively.
The case where β = 2 and ν = 1 shows the structure of PCM.

greedy type lazy type

Fig. 2. Nβ,α for β =
√

2.

Assume 1 < β < 2. Then each x ∈ [0, (β − 1)−1] has
a representation x =

∑∞
i=1 biβ

−i , bi ∈ {0, 1}. Introducing
γ := 1/β, we get

x =
∞∑

i=1

biγ
i, bi ∈ {0, 1}. (8)

P. Erdös [8] introduced the lexicographic order
L
< between real

sequences [9]:(bi)
L
< (b′i) if there is a positive integer m such

that bi = b′i for all i < m and bm < b′m. It is easy to verify that
for every fixed x ∈ [0, (β − 1)−1] in the set of all expansions
of x there is a greatest and a smallest element with respect
to this order: the so-called greedy and lazy expansion. (The
greedy expansions were studied earlier in [4] where they were
called β-expansions.) A number x has a unique expansion
if and only if its greedy and lazy expansions coincide. K.
Dajani [10] introduced the (β, α) expansion, a class of series
expansions to β > 1, β �∈ Z for each α ∈ [0, �β�

β−1 − 1]. Let
d1, · · · , d�β� be partition points given by: di := α+1

β , i =
1, · · · , �β	. Assume 1 < β < 2. Then, the (β, α) expansion
map Nβ,α : [0, (β− 1)−1] → [0, (β− 1)−1], with its invariant
subinterval [α, α + 1), is defined by

Nβ,α =
{

βx, x ∈ [0, α+1
β

)
βx − 1, x ∈ [α+1

β
, 1

β−1
).

When α = 0 and α = (β − 1)−1 − 1, the map generates
greedy and lazy expansion, respectively as shown in Fig.2.

The digits of the greedy and lazy expansions are defined
recursively as follows [9]: If m ≥ 1 and if the digit bi of
greedy expansion of x is defined for all i < m, then

bm =
{

1 if
∑

i<m biγ
i + γm ≤ x,

0 if
∑

i<m biγ
i + γm > x.

(9)

If m ≥ 1 and if the digit bi of lazy expansion of x is defined

for all i < m, then

bm =
{

0 if
∑

i<m biγ
i +

∑
i>m γi ≥ x,

1 if
∑

i<m biγ
i +

∑
i>m γi < x.

(10)

The relation
∑

i<m biγ
i +

∑
i>m γi =

∑∞
i=1 γi −

{∑i<m biγ
i + γm} = (β − 1)−1 −{∑i<m biγ

i + γm} gives
the lazy expansion in a different form of (10), defined by

bm =
{

0 if (β − 1)−1 − ∑
i<m biγ

i − γm ≥ x,

1 if (β − 1)−1 − ∑
i<m biγ

i − γm < x,
(11)

where bi = 1 − bi. Comparing (9) with (11), we find that
the greedy expansion

∑
i<m biγ

i of x corresponds to the lazy
expansion

∑
i<m biγ

i of (β − 1)−1 − x. This implies that the
greedy expansion is dual to the lazy expansion.

II. INTERVAL PARTITION BY β-EXPANSION

The duality of greedy expansion and lazy expansion sug-
gests that they should be equal, deserving the same perfor-
mance of decoding process as each other and furthermore,
expansions with the quantizer threshold ν ∼ (1+(β−1)−1)/2,
called “cautious”(neither greedy nor lazy) expansion, will be a
good promise other than these two expansions (see Fig.6). To
observe remarkable differences between Daubechies’ decoded
values of x[12], [13]1 and ours[16], discuss the process of
interval partition by β-encoding.

Let bβ
i for i = 1, 2, · · · , L be a β-expansion of x. Since

x =
∑L

i=1 bβ
i γi + γLNL

β,α(x) and NL
β,α(x) ∈ [0, (β − 1)−1),

the interval IL,β(bβ
i ) where x exists is defined by

Iβ
L(bi) = [

L∑
i=1

bβ
i γi,

L∑
i=1

bβ
i γi + (β − 1)−1γL). (12)

This means that iterating the β-transform gives the ratio
between (L − 1)-th successive subinterval-width, defined by
|Iβ

L(bβ
i )|

|Iβ
L−1(b

β
i )| , is equal to γ.
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[000] [000]
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Fig. 3. Interval partitions by β-expansion: x possesses three possible binary
representations; 011, 100, 101.

Fig.3 shows that the intervals of uniform width divided by
third iterate of the β-transformation overlap and so x has
three possible binary representations. Equation (12) leads us
to conclude that the middle point of the interval IL,β(bi) [16]
should be taken as the decoded value of x, defined by

x̃β
L =

L∑
i=1

bβ
i γi + (β − 1)−1γL/2 (13)

1Dajani[10] also discussed the greedy expansion’s superiority over the lazy
one.
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so that the bound of error between x and x̃β is given by

0 ≤ |x − x̃β
L| ≤ (β − 1)−1γL/2 (14)

On the contrary, Daubechies used the leftmost point of the
interval IL,β(bβ

i ) as the decoded value of x, defined by

x̃LDaub =
L∑

i=1

bβ
i γi (15)

and estimated its approximation error given by

0 ≤ x − x̃LDaub ≤ νγL. (16)

The bound of eq.(14) is improved by 3 dB than the one of
eq.(16) when β > 3/2. Borrowing Daubechies’ idea and using
β-expansion sequences bβ

i for x and cβ
i for y = 1−x (1 ≤ i ≤

L), we get the equation for estimating β, called characteristic
equation of β [16], defined by (see Fig.7)

Pβ(γ) = 1 −
L∑

i=1

(bβ
i + cβ

i )γi − γL+1

(1 − γ)
= 0 (17)

which differs from the Daubechies’ one [13] given by

PDaub(γ) = 1 −
L∑

i=1

(bβ
i + cβ

i )γi = 0. (18)

III. β-ENCODER WITH SCALED MAP OF β-EXPANSION

Consider the optimal design of β-encoder with its two
parameters 1 < β < 2 and ν ∈ [1, (β − 1)−1) in terms of the
quantization error against fluctuations of β, ν to be designed.
Since the tolerance of threshold fluctuations σβ is defined by
σβ = (β−1)−1−1, in order to design β and σβ independently,
define the scaled-map with its scale s by

S(x) :=
{

βx, x ∈ [0, νγ)
s− β(s − x), x ∈ [νγ, s) (19)

where s > 1 and ν ∈ [s(β−1), s]. Then, the torelance σβ,s =
s − s(β − 1) = s(2 − β). Let bSβ

i for 1 ≤ i ≤ L ∈ N be
a binary expansion of S(x) with using Qν(·) for x ∈ [0, 1),
then

SL(x) = βLx− s(β − 1)
L∑

i=1

bSβ
i βL−i (20)

or x = s(β − 1)
L∑

i=1

bSβ
i γi + γLSL(x). (21)

Using SL(x) ∈ [0, s), we get its subinterval where x exists

IL,β,s(b
Sβ
i ) = [s(β−1)

L∑
i=1

bSβ
i γi, s(β−1)

L∑
i=1

bSβ
i γi +sγL).

(22)
For given bit budget L, scale s and tolerance σβ,s, differenti-
ating |IL,β,s(bi)| with respect to β, i.e.,

d|IL,β,s(bSβi)|
dβ

=
σβ,sβ

−L+1

(2 − β)−2
{β − L(2 − β)} (23)

gives the value of β attaining the minimum of |IL,β,s(bSβi)| :

βopt =
2L

L + 1
. (24)

IV. NEGATIVE β-ENCODING

TABLE I
THE INVARIANT SUBINTERVAL OF NEGATIVE β-EXPANSION

thredhold ν invariant subinterval

(β − 1)s < ν < β2−β+1
β+1

s [βν − (β2 − β)s, βs − ν)

β2−β+1
β+1

s ≤ ν ≤ 2β−1
β+1

s [s − ν, βs − ν)
2β−1
β+1

s < ν < s [s − ν, βν − (β − 1)s)

Define the variance of quantization errors between sampled
value x and its decoded value x̃ with sample number N by

V :=
1
N

∑N
i=1 |xi − x̃i|2. Since the midpoint of the interval

IL,β,s is chosen as the decoded value, the variance V is larger
when ν = 1(greedy expansion) and ν = (β − 1)−1(lazy
expansion) as shown in Fig.6. This fact comes from the result
that the invariant subinterval of β-expansion [ν, ν + 1) is
deviated from β-transformation’s domain (0, s].

Such a situation motivates us to introduce the negative β-
map with its scale s > 1 defined by

R(x) :=
{

s − βx, x ∈ [0, νγ)
βs − βx, x ∈ [νγ, s) ν ∈ [s(β − 1), s] (25)

as shown in Figure 4.
The invariant subinterval under the map R(x) is a function

of ν as shown in Table 1. This, however, shows that each
invariant subinterval is always located in the center of (0, s).

Fig. 5 shows the structure of negative β-encoder. For each
x ∈ [0, 1) an assignment of bits, i.e. values bNβ

i := bNβ
i (x) ∈

0, 1. Given x, we define u1 = βx, and we set bNβ
1 = 1 if

u1 > ν , bNβ
1 = 0 if u1 ≤ ν , i.e., bNβ

1 = Qν(u1). We then
proceed recursively for i ≥ 1, defining ui+1 = s(bNβ

i β +
bNβ
i )− ui and bNβ

i+1 = Qν(ui+1) where bNβ
i = 1 − bNβ

i . Let
bNβ
i for i = 1, 2, · · · , L ∈ N be a binary expansion of R(x)

for x ∈ [0, 1), then

RL(x) = s

L∑
i=1

(bNβ
i β + bNβ

i )(−β)L−i + (−β)Lx (26)

or x = (−γ)LRL(x) − s

L∑
i=1

(bNβ
i β + bNβ

i )(−γ)i. (27)

Since RL(x) ∈ [0, s), the midpoint of the interval should be

Fig. 4. negative β-map.
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chosen as the decoded value of x defined by

x̃Nβ
L = s[(−γ)L/2 −

L∑
i=1

(bNβ
i β + bNβ

i )(−γ)i ]. (28)

This implies the approximation error between sampled value
x and its decoded value x̃Nβ

L is bounded by sγL/2, which
is identical to the one of β-encoder when s = (β − 1)−1 as
shown in Fig. 6. However, the variance of negative β-encoder
is improved when ν is set to around greedy value and lazy
value even if it fluctuates. Similarly, borrowing Daubechies’
idea and using the negative β-expansion sequences bNβ

i for
x and cNβ

i for y = 1 − x (i = 1, 2, · · · , L), we can get the
characteristic equation of β in negative β-encoder as follows:

PNβ(γ) = s{dNβ
1 +

L−1∑
i=1

(dNβ
i+1 − eNβ

i )(−γ)i

+ (1 − eNβ
L )(−γ)L} − 1 = 0, (29)

where dNβ
i = bNβ

i + cNβ
i and eNβ

i = bNβ
i + cNβ

i .
Fig. 7 shows the error between β and the estimated value

β̃, root of the characteristic equation of β.

V. CONCLUSION

The scale adjusted map was introduced to design the ampli-
fication factor of β-encoder for given bit budget, tolerance of
quantizer, and scale. Futhermore, we introduced the negative
β-encoder using the negative real number as the cardinal
number which improved the variance of the quantization errors
of β-encoder between sampled values and decoded values.
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[8] P. Erdös, and I. Joó, “On the expansion 1= Σq−ni ,” Periodica Mathe-
matica Hungarica, vol.23, no.1, pp25-28, Aug. 1991
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