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Abstract—We claim that a property of noise-robustness
is important for reliable physical random bit generators
(RBGs), and we report that RBGs using chaotic semicon-
ductor lasers are noise-robust, i.e. insensitive to properties
of a noise source. Employing the Lang-Kobayashi model,
we study an influence of variations of noise properties on
unpredictability of the laser chaos, and compare it with that
of a bistable RBG.

1. Introduction

Random bit generation is one of the important technolo-
gies of the information security, such as secret key genera-
tion, secret calculation, and secret distribution. For the in-
formation security technology, random bits should be hard
to predict. Thus, physical random bit generation is ex-
pected to be employed for the technologies, since the phys-
ical random bits are generated from unpredictable physical
phenomena, as thermal noise and quantum noise. Recently,
many researchers study and develop physical RBGs by us-
ing semiconductor lasers [1], a superluminescent LED [2],
and hybrid Boolean networks [3]. These studies mainly fo-
cus their attention on the generation speed of the random
bits, and less attention is being paid to reliability of the
RBGs.
In this paper, for the reliable physical RBG, we empha-

size that physical RBGs should be noise-robust. In gen-
eral, physical RBGs use some kind of noise source as a
black box, which means noise is generated by unknown
rules and it is hard to control. Therefore, the properties of
noise can be changed unexpectedly or some hidden prop-
erties of noise might exist or appear because of our limited
knowledge of noise source. For instance, the noise distri-
bution get to be biased or the noise sequence can get to
have a temporal correlation accidentally. Even so, the re-
liable physical RBGs are required to be less affected by
the changes of noise properties and/or appearing the hid-
den noise properties, particularly for the usage of the se-
curity technology. More concretely, we say that physical
RBGs are noise-robust if the unpredictability of the physi-
cal RBGs is not sensitive to the noise properties.
The Physical RBG by the semiconductor laser chaos is

one of the promising physical RBGs since it can generate
random bits fast enough [1] and its unpredictability is the-
oretically examined by Harayama et al. [7]. Hence, we
study the noise-robustness of physical RBG by the laser
chaos in this paper. Dependency of the noise strength on
the unpredictability of physical RBG by the laser chaos
is studied by Mikami et al. [6]. Here, we consider the
bias of the noise-distribution and the temporal correlation
of noise time sequence. Specifically, by employing Lang-
Kobayashi model, we study the noise-robustness of phys-
ical RBG by the laser chaos, and also we compare it with
that of the bistable RBG which is now commonly used, for
instance, in Intel’s Ivy Bridge [4].
The numerical model of the laser chaos, the numerical

method, and the noise sequence is described in Sec. 2
briefly. The noise-robustness of RBGs by chaotic laser to
the bias of the noise-distribution and the temporal corre-
lation of noise sequence are studied in Sec. 3 and Sec.4
respectively. In Sec. 5, we give conclusions and discus-
sions.

2. Numerical model and method

The chaotic dynamics of the semiconductor laser with
delayed feedback can be studied by the Lang-Kobayashi
model equation:
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E(t)2 + J, (1)

where E(t) ∈ R is an amplitude of a complex electric field,
φ(t) ∈ R is a phase of a complex electric field, N(t) ∈ R

is a career density, θ(t) := ωτ + φ(t) − φ(t − τ), and
F
(
E(t),N(t)

)
:= GN N(t)−N01+εE(t)2 . The parameter in the equa-

tions and their values used in the numerical experiments
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Symbols Parameters Values
τD External-cavity round-trip time 0.25ns
τp Photon lifetime 1.927ps
τs Carrier lifetime 2.04 ns
α Linewidth enhancement factor 5.0
GN Gain coefficient 8.4 × 10−13m3s−1
N0 Carrier density at transparency 1.400 × 1024m−3
ε Gain saturation coefficient 2.5 × 10−23
κ Feedback strength 6.25 ns−1
J Injection current 1.42 × 1033m−3s−1
ω Optical angular frequency 1.225 × 1015s−1
D Noise amp. 1.0 × 10−4

Table 1: The parameters in the Lang-Kobayashi equation and their values used in the numerical experiments.

are shown in Tab.1. The period of the relaxation oscillation
is Trelax = 2π/ωrelax = 0.35[ns], the external cavity length is
L = cτD/2 = 0.037[m], and J/Jth = 1.44. ξ(t) is a model of
the noise in the laser system such as the spontaneous emis-
sion, which is usually assumed as a white Gaussian pro-
cess. Here we consider ξ(t) as a biased white Gaussian pro-
cess in Sec. 3, and as a Ornstein Uhlenbeck (OU) process
in Sec.4. Numerical solutions of the Lang-Kobayashi equa-
tion are calculated by using 4th order Runge-Kutta method
(the time step Δt = 1.0×10−3), and the Ornstein Uhlenbeck
(OU) process is calculated by using the method of Fox et
al.[5].

3. Bias of noise-distribution

Here, we study the robustness of the chaotic laser RBGs
to a bias in a noise distribution. Usually, in studies of chaos
in the Lang-Kobayashi model, the center of the noise dis-
tribution is set to be zero: 〈ξ(t)〉 = 0, where the bracket
denotes a long time average 〈·〉 = limT→∞ 1

T

∫ T
0 · dt. Re-

alistically, it is difficult to set and keep the center of the
distribution to be zero. Thus, reliable RBGs are expected
to be robust to a bias in a noise distribution. In this section,
we study robustness of RBGs using Lang-Kobayashi model
chaos to changes in the center of the noise distribution.
Let us consider a white Gaussian process ξE(t) (ξφ(t))

whose mean value is ε
√
D (zero) as a biased noise se-

quence, i.e.

〈ξE(t)〉 = ε
√
D, 〈ξφ(t)〉 = 0, (2)

〈ξ′E(t)ξ′E(s)〉 = 〈ξ′φ(t)ξ′φ(s)〉 = Dδ(t − s), (3)

where ξ′(t) = ξ(t)−〈ξ(t)〉, √D is a noise strength, ε denotes
the normalized strength of the bias. To study the robustness
of RBG, we calculate probability p(ε) defined by

p(ε) =
∫ ∞
Et
P(E, ε)dE, (4)

where P(E, ε) is probability density function of the ampli-
tude of the electric field E when the chaotic laser is affected

by ε-biased noise sequence, and Et is a threshold to gener-
ate a bit from an analog sample of signal E(t) when ε = 0:
p(0) = 1/2 =

∫ ∞
Et
P(E, 0)dE =

∫ Et
−∞ P(E, 0)dE. Employ-

ing the probability p(ε), we can measure the robustness of
RBGs: for a given ε, the smaller the probability deviation
|p(ε) − 1/2| is, the more robust the RBG is. Specifically,
dp(0)/dε can be used for measuring a ”local” robustness,
which means the RBG is robust to infinitesimal changes in
noise properties.
Figure 1 shows the numerically calculated probability

p(ε): the red, green, blue, and purple line is the case of
D = 10−3, 10−4, 10−5, 10−6 respectively. The error bar is
the standard deviation of the ensemble average, where we
use ten different initial conditions with different noise real-
izations. The horizontal axis is ε. Except for the large noise
case (D = 10−3), the probability deviation |p(ε)−1/2| is less
than 0.01 for ε < 1, i.e. the error by the bias is less than 1
%.
As a reference, the probability deviation |p(ε) − 1/2|

in the bistable RBG case is also shown in Figure 1 (the
blue broken line). In the bistable RBG case, the prob-
ability p(ε) is given by the integration of the Gaussian
distribution, which is the complementary error function:
p(ε) = 1/2 erfc(ε).
Although the large deviation from p(ε) = 1/2 is found

in the large biased case in the large noise case (i.e. ε >
0.3,D = 10−3), dp(0)/dε is quite small for all noise
amplitude D (dp(0)/dε 	 0), particularly smaller than
dp(0)/dε = 1/

√
2π in the bistable case. Thus, the laser

chaos RBG is robust to the infinitesimal bias in noise dis-
tribution, particularly more robust than the bistable RBG.

4. Correlated noise

Next, we study the robustness of RBGs using chaotic
laser to the temporal correlation of noise sequence. As
mentioned in Sec. 2, we use the Ornstein Uhlenbeck (OU)
process ξ(t) governed by

dξ
dt
= −γξ + √2γDζ, (5)
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Figure 1: The probability deviation |p(ε) − 1/2|. The
red, green, blue, and purple line is the case of D =

10−3, 10−4, 10−5, 10−6 respectively. In the bistable RBG
case, p(ε) = 1/2 erfc(ε), as depicted by the blue broken
line.

where ζ is the white Gaussian process, i.e. 〈ζ(t)〉 =
0, 〈ζ(t)ζ(s)〉 = δ(t − s). Then, the OU process has fol-
lowing properties [8]: 〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = De−γ|t−s|.
D is fixed as shown in the Tab.1, and the correlation time
Tγ := 1/γ is a control parameter.
To measure the unpredictability of the laser chaos, we

define a correlation coefficient of the amplitude of the elec-
tric fields E(t). Here, we write the laser state and the noise
state as (x, ξ), and their time evolutions as

(x(T ), ξ(T )) = ϕTγ,i(x(0), ξ(0)), (6)

where ϕTγ,i is a time evolution operator defined by the evolu-
tion equations (1), (5) with the parameter γ. The subscript
i represents the index of the noise realization, i.e. the dif-
ferent indices mean the different noise realizations, which
cause the different time evolutions though the initial con-
ditions are same; ϕTγ,1(x(0), ξ(0)) � ϕ

T
γ,2(x(0), ξ(0)). Using

these notation, we define the correlation coefficient as

C(Tγ,Ts) :=

〈
Ẽ
(
ϕTsγ,1(x, ξ)

)
Ẽ
(
ϕTsγ,2(x, ξ)

)〉
Var(Ẽ)

(7)

where Ẽ is a fluctuation part of E; Ẽ(x) = E(x) − 〈E〉, and
Ts is the RBG sampling time. The correlation coefficient
C(Tγ,Ts) evaluates how fast the correlation vanishes by the
difference of the noise realization only. C(Tγ,Ts) can be
used as an indicator of the unpredictability of the RBG, i.e.
C(Tγ,Ts) = 0 indicates that the RBG is unpredictable.
We examine the parameter dependence of the correla-

tion coefficient C(Tγ,Ts) as shown in Fig.2. The darker
area corresponds to the lower correlation C(Tγ,Ts) 	 0,
and the lighter area corresponds to the higher correla-
tion C(Tγ,Ts) 	 1. Let us consider the functional rela-
tion Ts = f (Tγ) defined by the boarder between the area
C(Tγ,Ts) > 0 and the area C(Tγ, Ts) = 0. The light blue
curve in the figure is defined by C(Tγ,Ts) = 0.1 as a refer-
ence. The results show that the longer the noise correlation

time Tγ is, the longer the required sampling interval Ts is.
Interestingly, in the long correlation time region (Tγ 
 1),
the required sampling interval depends on the noise corre-
lation time Tγ logarithmically as Ts ∝ log Tγ.
As a reference, in the case of the bistable RBG, the re-

quired sampling interval is linearly proportional to the cor-
relation time as Ts ∝ Tγ for all Tγ. Thus, as we increase
the noise correlation time Tγ, the sampling interval Ts in
the case of the chaos laser gets longer with a slower speed
than that in the case of the bistable case. In this sense, the
laser chaos RBG is robust to the noise correlation, and in
particular more robust than the bistable RBG.
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Figure 2: The correlation coefficient C(Tγ,Ts) for tempo-
rally correlated noise. The light blue curve is defined by
C(Tγ,Ts) = 0.1.

5. Conclusions and discussions

The noise-robustness of an RBG using a chaotic laser
modeled by the Lang-Kobayashi equation.
Firstly, we consider the robustness of the chaos laser

RBG to the bias of the noise-distribution, and we found
that the chaos laser RBG is robust in the sense that the er-
ror in the probability p(ε) is less than 1 % for ε < 1 except
for the large noise case (D = 10−3). Also, the chaos laser
RBG is locally robust: dp(0)/dε is quite small, particularly
smaller than dp(0)/dε = 1/

√
2π in the bistable case.

Secondly, we consider the robustness of the chaotic laser
RBG to the temporal correlation of the noise. It is found
that the RBG by the chaos laser is robust in the sense that
the required sampling interval depends on the noise corre-
lation time Tγ logarithmically as Ts ∝ logTγ in the long
correlation time region (Tγ 
 1), which is more robust
than the bistable RBG case (Ts ∝ Tγ for all Tγ).
In the study of the robustness of RBG to the bias in the

noise-distribution, we considered the quantity dp(0)/dε.
The quantity is formulated in the linear response theory
for general dynamical systems developed by Ruelle [9] un-
der several assumptions. They considered the vector field
X + aX on a state space M which defines a flow ( f ta) with a
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hyperbolic attractor Ka depending continuously on a, and
they obtained a general formula:

d
da
ρa(A)|a=0 =

∫ ∞
0
dt
∫
ρ0(dx)X(x) · ∇x(A ◦ f t0), (8)

where ρa is the so-called SRB measure with the parameter
a, A : M → R is an observable, and ρa(A) =

∫
ρa(dx)A(x).

In our context, A = H(E(x) − Et) where H(·) is the Heavi-
side step function and E(x) is the amplitude of electric field
at state x ∈ M. The situations of the local robustness of
the RBG differ from those of the Ruelle’s linear response
theory since they considered the finite dimensional dynam-
ical system, the hyperbolic attractor, A is C2 function, and
so on. However, their theory is expected to be useful for
studying the robustness of a RBG by a chaotic attractor in
a general frame work, and the study in this direction will
be tackled in the future.

Appendix A. Why Ts ∝ log Tγ (Tγ 
 1) ?
Let us consider an equation of motion with noise dx/dt =

F(x) + ξx and dy/dt = F(y) + ξy. Initially, we sup-
pose δ(0) = Δ(0) = 0, where δ(t) = y(t) − x(t) and
Δ(t) = ξy(t) − ξx(t). An error vector δ is governed by a
variational equation dδ(t)/dt = DFxδ(t) + Δ(t), where DFx
is Jacobian matrix at x.
Initially, the error vector δ is governed by dδ(t)/dt 	

Δ(t). Considering ξx(t), ξy(t) as the OU process (see (5))
and the evolution equation dδ(t)/dt = Δ(t), we can obtain

〈Δ2(t)〉 = 2〈ξ2(t)〉 = 2D(1 − e−2γt) (9)

〈δ2(t)〉 = 4D
γ

(
t − 2
γ
(1 − e−γt) + 1

2γ
(1 − e−2γt)

)
. (10)

Here we study the case of γ � 1 (Tγ 
 1) and t = O(1) (or
t � 1), thus, the variance mentioned above can be approx-
imated by [8]

〈Δ2(t)〉 = 4γDt (11)

〈δ2(t)〉 = 4γD
3
t3. (12)

We compare the term in the variation equation dδ(t)/dt =
DFxδ(t) + Δ(t), and we find that there is a γ independent
transition time t̃ as follows: the evolution of the error vector
is dominated by the OU noise dδ(t)/dt 	 Δ(t) (0 ≤ t � t̃)
and by the chaotic dynamics dδ(t)/dt 	 DFxδ(t) (t 
 t̃).
The transition time is t̃ =

√
3c (c = const.), which is given

by c
√〈δ2(t̃)〉 = √〈Δ2(t̃)〉.

The time taken until a microscopic noise δ grows to be a
macroscopic one A is

T := t̃ +
1
λ
ln
(

A√
4γD/3 t̃3/2

)
. (13)

Here, we assume that the maximum Lyapunov exponent
λ does not depend on the existence of the noise term. If

Ts 
 T , there are no correlation between states x and y,
i.e. C 	 0, and if Ts � T , the states x and y are correlated,
i.e. C > 0. Therefore, Ts = f (Tγ) is given by

Ts = f (Tγ) = t̃ +
1
λ
ln
(

A√
4D/3 t̃3/2

)
+
1
2λ
lnTγ. (14)

When the system is purely deterministic (no noise), the
maximum Lyapunov exponent is calculated as λ ∼ 2.6.
Using this result, the slope of the function Ts = f (Tγ) at
Tγ 
 1 is 1

2λ log10 e
∼ 0.45 from the above argument, which

is near the slope in the Figure 2.
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