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Abstract—Collective spontaneous behavior of net-
worked dynamical systems and their structures of net-
works closely relate to each other. In this paper, we
focus on the networked dynamical systems in which
nodes are classified into two types, leaders and fol-
lowers. In this system, the states of the leaders are
not affected by other nodes, and they facilitate the
synchronization of the followers. We here propose
a method for reducing time required for reaching to
a synchronous state by selecting leaders based on the
eigenvectors of the graph Laplacian and show its per-
formance by numerical simulations.

1. Introduction

Coupled dynamical systems are one of effective
tools to understand collective spontaneous behavior in
several real systems. In particular, the synchroniza-
tion attracts great attention from several fields, be-
cause the synchronous behavior is widely observed
in several real technological and biological systems
[1–6], for example collective opinion or consensus
formation in social systems, synchronization of re-
production among plants in biological systems, and
synchronous behavior in a power grid to maintain a
steady power supply. From the technological and bio-
logical points of view, to facilitate the synchronization
is one of important issues.

In this paper, focusing on the facilitation of the syn-
chronization, we propose a method for reducing the
time that the networked dynamical systems reach to a
synchronous state in which all nodes in the network
follow the same trajectory. We start with a simple
linear consensus model described by using the graph
Laplacian which is a matrix that reflects the coupling
topology. We next propose the method for facilitat-
ing the synchronization based on the graph Lapla-
cian and show that our method effectively reduces the

time required for reaching to the synchronous state of
the consensus dynamics. We further show that our
method also works well in the case of coupled Rössler
systems used as an example of coupled nonlinear dy-
namical systems.

2. Graph Laplacian and networked dynamical
systems

The graph Laplacian appears in the several contexts
of the network science. Let A = (aij) be the n × n
adjacency matrix of a given network, where aij = 1
if the node i connects to j, aij = 0 otherwise. The
graph Laplacian of the network is defined by

L = K −A. (1)

The diagonal matrix K consists of degrees of nodes,
namely K = diag(k1, . . . , kn), where the degree of
the node i is described by ki =

∑n
j=1 aij . In this

paper, we simply assume that all networks are undi-
rected graphs (aij = aji), and each node does not
connect to itself (aii = 0).

Consensus in a networked individual units indicates
that a certain quantity that depends on the state of all
units reaches to a state of agreement [2]. The consen-
sus dynamics describes how each unit interacts with
its neighbors on the network. A simple consensus
model in the discrete-time is described as the follow-
ing linear dynamical system consisting of n nodes

u(t+ 1) = (I − ϵL)u(t), (2)

where u(t) = (u1(t), . . . , un(t))
⊺, ui(t) ∈ R is the

state of the node i at time t, R is a set of real numbers,
I is the n × n unit matrix , and ϵ ∈ [0, 1/maxi(ki))
is the temporal step size.

On the other hand, in the case of coupled nonlin-
ear dynamical systems, a system consisting of n iden-
tical dynamical systems interacting with each other
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through a connected network is described by

ẋi = F (xi)− γ
n∑

j=1

LijC(xj), (3)

where xi is the multidimensional state vector of the
ith dynamical system, γ is a coupling strength, F de-
termines the intrinsic dynamics of isolated individual
dynamical systems, and C is the coupling function
that defines the dynamics of links. Equation (3) cov-
ers wide variety of coupling forms and thus the graph
Laplacian performs a crucial role in estimating the sta-
bility of the coupled dynamical systems [5].

In both models described by Eqs. (2) and (3), if the
sum of squares of the differences between all pairs of
the state vectors of connected nodes crosses a certain
threshold θ, we consider that consensus is reached,
or a synchronous state is achieved in this paper. The
sum of squares ϕ(t) is described by using the graph
Laplacian

ϕ(t) = X⊺LX, (4)

where the matrix X consists of the n state vectors of
nodes X = (x1(t), . . . ,xn(t))

⊺. In the case of the
consensus model described by Eq. (2), X = u(t) =
(u1(t), . . . , un(t))

⊺.
In this paper, we focus on the networked dynamical

systems with leaders-followers [2, 4]. In this model,
there exist m (< n) leaders that are the nodes whose
states are the same as the states of other leaders. The
states of the leaders are not affected by the other non-
leader nodes (followers), but nodes connected to the
leaders are affected by the leaders. For example, in
the consensus model with leaders-followers, Eq. (2)
is rewritten by

u(t+ 1) =

[
I + ϵ

(
Lff Llf

0 0

)](
uf (t)
ul(t)

)
,

(5)
where u(t) = (uf (t)

⊺,ul(t)
⊺)⊺, uf (t) =

(uρ1(t), . . . , uρn−m(t))
⊺ is the state vector of the fol-

lowers, ul(t) = (uρn−m+1(t), . . . , uρn(t))
⊺ is the

state vector of the leaders, the (n − m) × (n − m)
matrix Lff represents the interaction between the fol-
lows, and the (n−m)×m matrix Llf represents the
connections from the leaders to the follows. The in-
dex of the node i is relabeled by ρi (i = 1, . . . , n)
such that the graph Laplacian is partitioned into two
block matrices Lff and Llf . In the same manner
as the consensus model, classifying nodes into two

types, namely the leader and the follower, and rela-
beling the index of the node i as a new index ρi, we
can partition the graph Laplacian in Eq. (3) as follows

L =

(
Lff Llf

0 0

)
. (6)

In the networked dynamical systems with leaders-
followers, it is expected that the presence of leaders
reduces time when the consensus is reached or the
synchronization is achieved.

3. Method

In our method, selecting leaders by using the eigen-
vector corresponding to the second smallest eigen-
value of the graph Laplacian, we propose a method
for facilitating the synchronization. From the perspec-
tive of the community detection method, the number
of links R between two groups, or communities, is
described by the graph Laplacian as follows [7]

R =
1

2

n∑
i=1

n∑
j=1

(1− sisj)

2
aij

=
1

4

n∑
i=1

n∑
j=1

sisj(kiδij − aij)

=
1

4
sTLs, (7)

where δij is the Kronecker delta, namely if i = j,
δij = 1, otherwise zero, s = (s1, . . . , sn)

T is an index
vector in which si = 1 if the node i belongs to one
group, but si = −1 if the node i belongs to another
group. The relation

∑n
i=1

∑n
j=1 aij =

∑n
i=1 s

2
i ki =∑n

i=1

∑n
j=1 sisjkiδij is used in the second equality.

If the nodes i and j belong to the same group, then the
term (1− sisj)/2 is zero, but unity if not, and thereby
the number of links between two groups are calculated
by Eq. (7). By using eigenvalues λi (λ1 = 0 ≤ λ2 ≤
· · · ≤ λn) and their eigenvectors vi of L, Eq. (7) is
rewritten by

R =
1

4
sTLs =

1

4

n∑
i=1

λi(v
T
i s)

2. (8)

By minimizing R, nodes in a network can be classi-
fied into two communities. If s is proportional to v2,
Eq. (8) is minimized, because the eigenvector v1 cor-
responding to λ1 (= 0) is 1 and this vector does not
give any division of the network. However, under the
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situation that si only takes −1 or 1, it is not possible to
define s as the vector proportional to v2. One of possi-
ble ways to determine si is to set si = 1 if vi2 ≥ 0 and
si = −1 if vi2 < 0 such that Eq. (8) is minimized as
much as possible. In addition, allowing si to take an
arbitrary real number, we obtain the relaxed objective
function of Eq. (8). The relaxed objective function of
Eq. (8) is minimized when s = v2. In this case, the
sign of si represents the group to which the node i be-
longs, and the absolute value |si| is considered as the
importance or centrality of the node i in the group. In
our strategy, using the importance of each node in the
group, namely the absolute values of the elements in
the eigenvector corresponding to the second smallest
eigenvalue, we select m leaders in a descending order
of their values.

4. Numerical experiments

To evaluate the performance of our method, we
conduct numerical experiments. We first apply our
method to coupled linear dynamical systems in which
the dynamics of each node obeys the consensus model
described by Eq. (2). The topology of networks are
generated from the model proposed by Watts and Stro-
gatz (WS model) in which the links in the initial ring-
lattice with the degree k is rewired with a probability
p [9]. Then we can generate the ring-lattice (p = 0),
the small-world networks, and the random networks
(p = 1) from the WS model. In the numerical simu-
lations, the number of nodes in the network generated
from the WS model is set to 500, the degree of the
initial ring-lattice is ten, and the number of leaders m
is five.

We also employ the model proposed by Barabási
and Albert (BA model) that can generate networks
whose degree distribution obeys a power law [8]. In
the BA model, a single new node with l links is repeat-
edly added to the current network whose initial state is
a complete graph consisting of l nodes. In the numer-
ical simulations, the number of nodes in the network
generated from the BA model is set to 5,000, l is set
to three, and m is ten.

In addition, we use the real networks: a social net-
work of 62 dolphins [11], human relations between
34 members in the Zachary karate club [12], a co-
appearance network between 77 characters in the fa-
mous novel Les Miserables [13], and the neural net-
work of C. elegans [9]. In these real networks, we set

m to five.
We next apply our method to the coupled Rössler

systems as an example of the coupled nonlinear dy-
namical systems [6,10]. The ith Rössler system obeys
the following dynamics

ẋi = −(yi + zi)− γ

n∑
j=1

Lijxj ,

ẏi = xi + ayi,

żi = b+ zi(xi − c),

(9)

where γ is a coupling strength, a = b = 0.2, c = 7,
γ ∈ (α1/λ2, α2/λn), α1 = 0.1232, and α2 = 4.663
according to Refs. [5, 6]. In the numerical exper-
iments, selecting m leaders from n nodes, we at-
tempt to reduce the time T when ϕ(t) crosses a
given threshold θ. The states of leaders are set to
the average of the states of followers in this pa-
per. The state of the leaders in the consensus model
is

∑n−m
i=1 uρi(t)/(n − m), and that in the coupled

Rössler system is
∑n−m

i=1 uρi(t)/(n − m), where
uρi(t) = (xρi(t), yρi(t), zρi(t))

⊺. The threshold θ
is set to 10−9 through this paper. In the following,
we call the time when the ϕ(t) crosses the threshold
θ the time of consensus. Let TL be the time of con-
sensus under the situation that the leaders are selected
by the proposed method, Tr be the time of consensus
under the situation that the leaders are randomly se-
lected, and To be the time of consensus under the case
without leaders. Investigating the time of consensus
TL, Tr, and To, we evaluate how our method affects
to the time when the synchronization is achieved.

5. Results

Figure 1 shows a typical example of trajectories of
ϕ(t) obtained from the consensus model whose net-
work topology is a random network generated by the
WS model with p = 1. Table 1 shows the summary
of the time of consensus. In Table 1, TL, Tr, and To

are averaged over 100 trials. From Table 1, the ratio of
the time of consensus TL to To is smaller than or equal
to unity, and the ratio TL/To is also smaller than the
results of the random selection Tr/To in most cases.
From these results, our method can effectively reduce
the time of consensus. In particular, our method works
well in the real networks. The networks of dolphins,
members in Zachary’s karate club, and characters of
Les Miserables have community structures according
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to Refs. [7, 11]. Our method uses the eigenvector
v2 corresponding to the second smallest eigenvalue
of the graph Laplacian. Because the values of ele-
ments in v2 represents an importance of the nodes in
the group, the leaders are likely to be arranged onto
each group in our strategy, and thereby our method
shows higher performance in the real networks hav-
ing the community structures than the performance in
other networks.
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Figure 1: Typical examples of trajectories of ϕ(t). The
results for the proposed method (red line), the random se-
lection strategy (blue line), and the simple consensus model
without leaders-followers (gray line). The number of lead-
ers m is set to five.

Table 1: The results of the time of consensus.
Dynamics Network TL/To Tr/To

Consensus WS model (p = 0.1) 0.98 1.00
Consensus WS model (p = 0.5) 0.96 1.00
Consensus WS model (p = 1) 0.85 0.99
Consensus BA model 1.00 1.00
Consensus Dolphins 0.63 0.70
Consensus C. Elegans 0.74 0.99
Consensus Zachary’s karate club 0.63 0.72
Consensus Les Miserable 0.80 0.88
Rössler WS model (p = 0.1) 0.57 0.52

Rössler WS model (p = 0.5) 0.98 1.02
Rössler WS model (p = 1) 0.85 0.96

6. Conclusion

In this paper, we focused on the networked dynam-
ical systems in which nodes are classified into lead-
ers and followers. In the networked dynamical sys-
tems with leaders-followers, the states of the leaders
are not affected by other nodes, and they facilitate
the synchronization of the followers. We proposed
a method for reducing time required for reaching to
a synchronous state by selecting leaders based on

the eigenvectors corresponding to the second small-
est eigenvalue of the graph Laplacian. In the numeri-
cal experiments, the consensus model and the Rössler
systems were arranged onto the nodes in several net-
works generated from mathematical models and also
onto some real networks. As the results, our method
works well in most networks that we used in this pa-
per. It is one of important future works to investigate
analytically the performance and its limitation of our
method analytically.

The research of Y.S. is supported by Grant-in-
Aid for Research Activity Start-up (No. 26880020)
from JSPS. The research of T.I. was partially sup-
ported by Grant-in-Aid for Exploratory Research (No.
24650116) from JSPS.

References

[1] M. E. J. Newman, “Networks: An Introduction,”
Oxford University Press, 2010.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, Pro-
ceedings of the IEEE, 95:215–233, 2007.

[3] J. Shao, S. Havlin, and H. Stanley, Phys. Rev.
Lett., 103:018701, 2009.

[4] E. Estrada and E. Vargas-Estrada, Sci. Rep.,
3:2905, 2013.

[5] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett.,
80:2109–2112, 1998.

[6] P. J. Menck, et al., Nat. Phys., 9:88–92, 2013.

[7] A. Clauset, M. E. J. Newman, and C. Moore,
Phys. Rev. E, 70:066111, 2004.

[8] A. -L. Barabási and R. Albert Science, 286:509-
512, 1999.

[9] D. J. Watts and S. H. Strogatz, Nature, 393:440–
442, 1998.
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