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Abstract—Reservoir computing is a novel bio-inspired
computing method and highly efficient approach for pro-
cessing empirical data. One of the important properties
of reservoir computing is consistency, where the same re-
sponse output can be observed by a repeated drive signal.
Semiconductor lasers with optical injection show consis-
tent outputs. We implement reservoir computing by using
semiconductor lasers subject to optical delayed-feedback
and injection. We investigate the performance on Santa Fe
laser time-series prediction task.

1. Introduction

Reservoir computing is a novel computing method in-
spired by the human brain [1-3]. Reservoir computing can
solve some tasks (e.g. time-series prediction and speech
recognition) using machine learning with training data and
output weights. In 2011, a method using a nonlinear
dynamical system subject to delayed-feedback has been
demonstrated [4]. Since then, many studied on reservoir
computing with optical dynamical systems have been re-
ported intensively to achieve high-speed processing [5-10].

One of the important characteristics for reservoir com-
puting is consistency. Consistency is defined as the re-
producibility of the response output driven repeatedly by
a complex signal, as shown in Fig. 1. Consistency has
been observed in laser systems [11]. To achieve consis-
tency, transient dynamics at a steady state has been mainly
used in reservoir computing [4,5,7,8]. Recently, optical in-
jection of a constant drive signal to a semiconductor laser
has been used to obtain consistent response output [9,10].
However, no studies have been reported by using consis-
tency of a semiconductor laser with respect to a chaotic
drive signal. A chaotic drive signal may enhance the per-
formance of reservoir computing.

In this paper, we introduce a scheme for reservoir com-
puting using semiconductor lasers with optical feedback
and injection. We perform a time-series prediction task
with the semiconductor laser systems. We used both con-
stant and chaotic drive signals to test the performance of
the prediction task.
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Figure 1: Concept of consistency.

2. Model of Reservoir computing

We use a scheme for reservoir computing using a semi-
conductor laser with optical injection, as shown in Fig. 2.
For pre-processing, temporal mask is applied for each input
data. The input data is expanded for the time durationT.
The temporal mask consists of a piecewise constant func-
tion with a randomly-modulated binary sequence{−1,1}
with equal probabilities. The length of the temporal mask
matches the length of the input time durationT. This in-
terval is divided intoN sub-intervals of node separationθ,
whereT = Nθ. The input signal is constructed by the con-
volution of the input data with the temporal mask.
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Figure 2: Schematics of reservoir computing.

For post-processing, virtual nodesxi (i = 1,2, . . . ,N) are
defined as the outputs of the response laser in the feedback
loop at the final point of each intervalθ. A linear combina-
tion of the output of the virtual nodesxi(n) with weightsWi

is calculated for machine learning, wherey(n) =
∑

i Wi xi(n)
for n-th input data. The weights are optimized by training
process. The weighted outputy(n) is used to evaluate the
performance of reservoir computing.

There are two approaches to determine the input time
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durationT. The input timeT can be set to be exactly the
same as the feedback delay timeτ = T, known as the syn-
chronized scheme [4, 5, 8, 9, 10]. On the contrary, the in-
put timeT can be slightly mismatched to the feedback de-
lay timeτ = T + θ, known as the unsynchronized scheme
[6, 7]. We used the unsynchronized scheme since the mis-
match betweenT andτ results in rich variation of the nodes
and good performance of reservoir computing [6, 7].

We set the parameter values for our numerical simula-
tions as follows:θ = 0.1 ns,N = 400, T = 40.0 ns, and
τ = 40.1 ns.
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Figure 3: Schematics of reservoir using two semiconductor
lasers with optical feedback and injection. IM, intensity
modulator. ISO, optical isolator.

Figure 3 shows the schematics of the reservoir with
unidirectionally-coupled two semiconductor lasers. The
optical output of one semiconductor laser (called drive
laser) is injected into the other laser (called response laser).
The response laser has an external mirror to add time-
delayed optical feedback. The outputs in the time-delayed
feedback loop are used as the nodes for reservoir comput-
ing. The intensity of the drive laser output is modulated
by the input signal. For one case, the drive laser is set to
a constant output without the input signal, as used in Refs.
[9, 10]. For the other case, we consider an additional mod-
ulation of the drive signal by using a pre-recorded chaotic
temporal waveform. A chaotic signal is prepared from a
semiconductor laser with optical feedback and recorded in
a memory. A segment of the chaotic signal is selected with
the length of the input time durationT. The intensity of
the drive signal is repeatedly modulated by using the finite-
length chaotic signal and sent to the response laser so that
consistent output can be observed with respect to each rep-
etition of the chaotic signal. We expect that chaos mod-
ulation of the drive signal may result in a variety of node
dynamics and may enhance the performance of reservoir
computing. Note that it is important to maintain the con-
sistency of the response laser outputs even when the chaotic
signal of the drive laser is injected into the response laser
[11].

We implement reservoir computing using consistency of
a semiconductor laser with optical feedback and injection
in numerical simulations. The dynamics of semiconductor
lasers is calculated by using Lang-Kobayashi equations as
follows [12].

dEr (t)
dt

=
1+ iα

2

{
GN(N(t) − N0)
1+ ε | E(t) |2 −

1
τp

}
E(t)

+ κEr (t − τ) exp(−iωrτ)

+ κin jEd(t) exp(i∆ωt) + ξ(t) (1)

dNr (t)
dt

= J − Nr (t)
τs
− GN(Nr (t) − N0)

1+ ε | Er (t) |2
| Er (t) |2 (2)

whereEd(t) andEr (t) are the electric field amplitudes of
the drive and response lasers, andNr (t) is the carrier den-
sity of the response laser.α is the linewidth enhancement
factor,GN is the gain coefficient,N0 is the carrier density at
transparency,ε is the saturation coefficient,τp,s are the pho-
ton and carrier lifetimes,κ is the feedback strength of the
response laser,κin j is the injection strength from the drive
to response laser.ωd,r are the optical angular frequency
of the drive and response lasers.jd,r are the injection cur-
rents normalized by the lasing threshold.Jth is the injection
current at lasing threshold.∆ω is the angular frequency de-
tuning (2π∆ f ). τ is the feedback delay time of the response
laser. These parameter values are summarized in Table 1.
We added the white Gaussian noiseξ(t) to the electric field.
The signal-to-noise ratio is set to−20 dB in our numerical
simulations.

Table 1: Laser parameter values used in numerical simula-
tions

Parameter Value
α 3.0

GN 8.40× 10−13 m3s−1

N0 1.40× 1024 m−3

ε 2.0× 10−23

τp 1.927× 10−12 s
τs 2.04× 10−9 s
κ 74.55 ns−1

κin j 155.32 ns−1

ωd 1.23× 1015 rad/s
∆ f (= ∆ω/2π = (ωd − ωr )/2π) 0.0 GHz

τ 40.0 ns
jd (= Jd/Jth) 1.30
jr (= Jr/Jth) 1.05

2.1. Performance of Santa Fe time-series prediction
task

To evaluate the performance of our scheme, we used the
Santa Fe time-series prediction task [13]. The aim of the
task is to predict one step ahead of chaotic data generated
from a far-infrared laser. The input chaotic data and the
predicted data are compared for the evaluation of the per-
formance. We used a constant drive signal for the numer-
ical simulations. Figure 4(a) shows the result of the time
series prediction task. In Fig. 4(a), the time series pre-
dicted by using the reservoir computing is similar to the
input chaotic data. The difference between the two time se-
ries is plotted as a prediction error in Fig. 4(b). It is found
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that the prediction error occurs when the original chaotic
data suddenly decreases in time.

The performance on the task is evaluated by using the
normalized mean-square error (NMSE) as follows,

NMS E=
1
L

L∑
n=1

(ȳ(n) − y(n))2/var(ȳ) (3)

wheren is the index of the input data andL is the total
number of the input data.y(n) is the linear combination
of the nodes with trained weights of reservoir computing
that are compared to the value ¯y(n) as a target data ofn-th
input data.var(ȳ) is the variance of ¯y. The NMSE for our
prediction task is 0.02 in Fig. 4(b), and this value indicates
a good performance of the reservoir computing.
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Figure 4: Temporal waveforms of (a) input signal and pre-
diction result, and (b) error signal between them.

3. Performance for chaotic drive input

We used three types of drive signals to improve the per-
formance of Santa Fe time-series prediction task. Figure
5(a) shows the three different drive signal without input
signal used for reservoir computing. The first signal is a
constant output, denoted as Drive 1 (the black curve in Fig.
5(a)) The second one is a chaotic output generated from
a semiconductor laser with optical feedback, denoted as
Drive 2 (the red curve). The chaotic signal is generated
beforehand and recorded in a memory. The intensity of
a constant drive signal is modulated repeatedly by the pre-
recorded chaotic signal to generate Drive 2. The bandwidth
of Drive 2 is about 7 GHz. We also generate a bandwidth-
enhanced chaotic output from two coupled semiconductor
lasers, denoted as Drive 3 (blue curve). The bandwidth of
the chaotic signal is about 30 GHz. A constant drive signal
is modulated by using one of the three types of the drive
signals and the input signal with temporal mask.

Figure 5(b) shows the temporal waveforms of the tran-
sients of the response laser output. The output of Response
i is generated from the input of Drivei (i = 1,2,3). A
square waveform with two binary states are observed in Re-
sponse 1, corresponding to random modulation of the tem-
poral mask, and transient dynamics are slightly observed at
the edge of the square waveform. The temporal waveform
of Response 2 is more fluctuated than that of Response 1,
since the chaotic drive input is used, instead of the constant
drive input. However, the shape of the square waveform
still remains. Faster and more complex dynamics are ob-
served in the output of Response 3, where faster chaotic
drive input is used. A variety of the chaotic waveforms may
result in rich variation of the internal states of the nodes for
learning process.
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Figure 5: (a) Temporal waveforms of (a) drive and (b) re-
sponse outputs. Drive1: constant signal, Drive2: chaotic
signal, Drive3: bandwidth-enhanced chaotic signal. Re-
sponsei is generated from Drivei (i = 1,2, 3). The dots
indicate the nodes.

Figure 6 shows the performance of the time-series pre-
diction for the three types of the drive signals as the feed-
back strengthκ of the response laser is changed. The
NMSE is plotted for the three types of the drive signals.
Note that consistency of the response laser is achieved in
the range 0≤ κ ≤ 82 ns−1. The NMSEs for Drive 1 (the
constant signal) and Drive 2 (the chaotic signal) are almost
the same values in the consistency region. It is worth noting
that the NMSE for Drive 3 (the bandwidth-enhanced chaos)
is smaller than those for the Drive 1 and 2 in the consistency
region. The performance of the time-series prediction task
is improved by using the bandwidth-enhanced chaos. We
speculate that the improvement of the performance results
from rich dynamics of the response temporal waveforms,
as shown in Fig. 5(b).
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Figure 6: NMSE of the Santa Fe time-series prediction task
as a function of the feedback strengthκ for three types of
the drive signals.κin j = 155 ns−1.

4. Conclusions

We investigated reservoir computing using consistency
of semiconductor lasers with optical feedback and injec-
tion by numerical simulations. The performance of the
time-series prediction task was carried out. The prediction
was succeeded in the region of consistency of the response
laser. We also introduced three types of the drive signals:
constant, chaotic, and bandwidth-enhanced chaotic signals.
We found that the performance of the time-series prediction
is improved by using the bandwidth-enhanced chaotic drive
signal.

Acknowledgments

We gratefully acknowledge support from a Grant-in-Aid
for Young Scientists and Management Expenses Grants
from the Ministry of Education, Culture, Sports, Science
and Technology in Japan.

References

[1] H. Jaeger, ”The ’echo state’ approach to analysing and
training recurrent neural networks - with an Erratum
note,” GMD Report., Vol.148: German National Re-
search Centre for Information Technology, 2001.

[2] W. Maass, T. Natschl¨ager, and H. Markram, ”Real-
time computing without stable states: a new framework
for neural computations based on perturbations,”Neu-
ral Comput., Vol. 14, No. 11, pp. 1531, 2002.

[3] H. Jaeger and H. Haas, ”Harnessing nonlinearity: pre-
dicting chaotic systems and saving energy in wireless
communication,”Science., Vol. 304, No. 5667, pp. 78,
2004.

[4] L. Appeltant, M.C. Soriano, G. Van der Sande, J.
Danckaert, S. Massar, J. Dambre, B.Schrauwen, C.R.
Mirasso, and I. Fischer, ”Information processing us-
ing a single dynamical node as complex system,”Nat.
Commun., Vol. 2, pp. 468, 2011.

[5] L. Larger, M.C. Soriano, L. Appeltant, J.M. Gutierrez,
L. Pesquera, C.R. Mirasso, and I. Fischer, ”Photonic
information processing beyond Turing: an optoelec-
tronic implementation of reservoir computing,”Opt.
Express, Vol. 20, pp. 3241, 2012.

[6] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B.
Schrauwen, M. Haelterman, and S. Massar, ”Optoelec-
tronic reservoir computing,”Sci. Rep., Vol. 2, No. 287,
pp. 347, 2012.

[7] F. Duport, B. Schneider, A. Smerieri, M. Haelterman,
and S. Massar, ”All-optical reservoir computing,”Opt.
Express, Vol. 20, pp. 22783, 2012.

[8] D. Brunner, M.C. Soriano, C.R. Mirasso, and I. Fis-
cher, ”Parallel photonic information processing at gi-
gabyte per second data rates using transient states,”
Nat. Commun., No. 4, pp. 1364, 2013.

[9] K. Hicke, M.A. Escalona-Mor´an, D. Brunner, M.C.
Soriano, I. Fischer, and C.R. Mirasso, ”Information
processing using transient dynamics of semiconductor
lasers subject to delayed feedback,”IEEE J. Quantum
Electron., Vol. 19, No. 4, pp. 1501610, 2013.

[10] R.M. Nguimdo, G. Verschaffelt, J. Danckaert, and G.
Van der Sande, ”Fast photonic information processing
using semiconductor lasers with delayed optical feed-
back: Role of phase dynamics,”Opt. Express, Vol. 22,
No. 7, pp. 8672, 2014.

[11] A. Uchida, R. McAllister, and R. Roy, ”Consistency
of nonlinear system response to complex drive sig-
nals,”Phys. Rev. Lett., Vol. 93，pp. 244102, 2004.

[12] R. Lang and K. Kobayashi, ”External optical feed-
back effects on semiconductor injection laser proper-
ties,” IEEE J. Quantum Electron., Vol. 16, pp. 347,
1980.

[13] Santa Fe time-series prediction
URL: http://www-psych.stanford.edu/∼andreas/Time-
Series/SantaFe.html

- 560 -


