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Abstract—Reservoir computing is a novel bio-inspired Repeated
computing method and highlyfficient approach for pro- drive signal out (Nominear Output AM"WN
cessing empirical data. One of the important properties & dynamical a
of reservoir computing is consistency, where the same re- system \ L\M/"\Mf
) . (Response)
sponse output can be observed by a repeated drive signal.
Semiconductor lasers with optical injection show consis- Figure 1: Concept of consistency.

tent outputs. We implement reservoir computing by using
semiconductor lasers subject to optical delayed-feedbagk Model of Reservoir computing

and injection. We investigate the performance on Santa Fe ) ) ) .

conductor laser with optical injection, as shown in Fig. 2.
For pre-processing, temporal mask is applied for each input
data. The input data is expanded for the time duralfion
The temporal mask consists of a piecewise constant func-
tion with a randomly-modulated binary sequered, 1}

Reservoir computing is a novel computing method In\_/\/ith equal probabilities. The length of the temporal mask

spired by the human bralq [1-3]. Reservo!r c;omputmg can atches the length of the input time duratidn This in-
solve some tasks (e.g. time-series prediction and speec

recognition) using machine learning with training data anaerval 's divided intoN sub-intervals of node separatién
9 9 9 9 whereT = N6@. The input signal is constructed by the con-

output weights. In 2011, a method using a nonlinear  ~ . . ;
dynamical system subject to delayed-feedback has be\é%lut|on of the input data with the temporal mask.
demonstrated [4]. Since then, many studied on reservoir Input Layer
computing with optical dynamical systems have been re-

ported intensively to achieve high-speed processing [5-10].
One of the important characteristics for reservoir com-
puting is consistency. Consistency is defined as the re-
producibility of the response output driven repeatedly by %)

1. Introduction

Response signal

Output Layer

a complex signal, as shown in Fig. 1. Consistency has Modulation D U UL Weidhts
been observed in laser systems [11]. To achieve consis- . Vi @ @ o J
tency, transient dynamics at a steady state has been mainl \Reserveir_ Miror 3+—3¥

used in reservoir computing [4,5,7,8]. Recently, optical in- Output
jection of a constant drive signal to a semiconductor laser
has been used to obtain consistent response output [9,10].
However, no studies have been reported by using consis-
tency of a semiconductor laser with respect to a chaotic For post-processing, virtual nodesi = 1,2, ..., N) are
drive signal. A chaotic drive signal may enhance the pegefined as the outputs of the response laser in the feedback
formance of reservoir computing. loop at the final point of each interval A linear combina-

In this paper, we introduce a scheme for reservoir contion of the output of the virtual nodeg(n) with weightsWj
puting using semiconductor lasers with optical feedbacis calculated for machine learning, whefte) = >; Wix(n)
and injection. We perform a time-series prediction taskor n-th input data. The weights are optimized by training
with the semiconductor laser systems. We used both coprocess. The weighted outpy(n) is used to evaluate the
stant and chaotic drive signals to test the performance p&rformance of reservoir computing.
the prediction task. There are two approaches to determine the input time

Figure 2: Schematics of reservoir computing.
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durationT. The input timeT can be set to be exactly the
same as the feedback delay time T, known as the syn-
chronized scheme [4, 5, 8, 9, 10]. On the contrary, the in-
put timeT can be slightly mismatched to the feedback de- dN(®) Ne(t)  Gu(N:(t) = No)
lay time7 = T + 6, known as the unsynchronized scheme . - J- -7 =02
[6, 7]. We used the unsynchronized scheme since the mis- Ts +el B
match betweefl andr results in rich variation of the nodes  whereE(t) andE, (t) are the electric field amplitudes of
and good performance of reservoir computing [6, 7]. the drive and response lasers, awdt) is the carrier den-
We set the parameter values for our numerical simulasity of the response laset is the linewidth enhancement
tions as follows:¢ = 0.1 ns,N = 400,T = 400 ns, and factor,Gy, is the gain cofficient, Ny is the carrier density at
T=401ns. transparency; is the saturation cd&cient,r s are the pho-
" M IS0 Mirror ton and callrrier Iifgtirpheg i; tr:_e feetdbactlas]:trengithh o(;‘ Fhe
response lasek,; is the injection strength from the drive
_I_I_|-’H T |._)| to response Iaséra)d,r are the optical angular frequency
r 4 of the drive and response laseijg, are the injection cur-
Repeated Input signal rents normalized by the lasing threshalg, is the injection
signal current at lasing thresholdw is the angular frequency de-

Figure 3: Schematics of reservoir using two semiconductd#ning (ZrAf). 7 is the feedback delay time of the response

lasers with optical feedback and injection. IM, intensity/@Ser- These parameter values are summarized in Table 1.
modulator. 1SO, optical isolator. We added the white Gaussian na#€ to the electric field.

The signal-to-noise ratio is set #20 dB in our numerical
simulations.

+

kE (t — 7) expliwe )
«inj Ea(t) expAwt) + £(1) 1)

+
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Figure 3 shows the schematics of the reservoir Wltl:f’able 1: Laser parameter values used in numerical simula-

unidirectionally-coupled two semiconductor lasers. Th?
) . . tions
optical output of one semiconductor laser (called drive
laser) is injected into the other laser (called response laser). Parameter Value
The response laser has an external mirror to add time- a 3.0
delayed optical feedback. The outputs in the time-delayed Gn 840%x 10 B m3s T
feedback loop are used as the nodes for reservoir compuf- No 140x 1072 m=3
ing. The intensity of the drive laser output is modulated c 20x 1023
by the input signal. For one case, the drive laser is set t ™ 1927x 1025
a constant output without the input signal, as used in Refs; T 5204x10°%s
[9, 10]. For the other case, we consider an additional mods P 7455 ns T
ulation of the drive signal by using a pre-recorded chaoti P 15532 ns 1
temporal waveform. A chaotic signal is prepared from a u')nj 123% 105 rads
semiconductor laser with optical feedback and recorded i — _d :
T ; | AT (= Aw/2r = (wg — wr)/2n) 0.0 GHz

a memory. A segment of the chaotic signal is selected with = 200 1S
the length of the input time duratioh. The intensity of . -

. . . . .. Jd (= Jd/\]’[h) 1.30
the drive signal is repeatedly modulated by using the finite d

Jr (= Jr/Jth) 1.05

length chaotic signal and sent to the response laser so that
consistent output can be observed with respect to each rep-
etition of the chaotic signal. We expect that chaos mod-
ulation of the drive signal may result in a variety of node
dynamics and may enhance the performance of reserv ik
computing. Note that it is important to maintain the con-
sistency of the response laser outputs even when the chaotiqg evaluate the performance of our scheme, we used the
signal of the drive laser is injected into the response lasgfanta Fe time-series prediction task [13]. The aim of the
[11]. task is to predict one step ahead of chaotic data generated
We implement reservoir computing using consistency ofom a far-infrared laser. The input chaotic data and the
a semiconductor laser with optical feedback and injectiopredicted data are compared for the evaluation of the per-
in numerical simulations. The dynamics of semiconductaformance. We used a constant drive signal for the numer-
lasers is calculated by using Lang-Kobayashi equations g\l simulations. Figure 4(a) shows the result of the time

Performance of Santa Fe time-series prediction
task

follows [12]. series prediction task. In Fig. 4(a), the time series pre-
dicted by using the reservoir computing is similar to the

dE (t) 1+ia[GN(N({)-No) 1 input chaotic data. The fierence between the two time se-
at 2 { 1+e| E(t) ]2 - _}E(t) ries is plotted as a prediction error in Fig. 4(b). Itis found
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that the prediction error occurs when the original chaotic Figure 5(b) shows the temporal waveforms of the tran-

data suddenly decreases in time. sients of the response laser output. The output of Response
The performance on the task is evaluated by using thes generated from the input of Drivie(i = 1,2,3). A
normalized mean-square error (NMSE) as follows, square waveform with two binary states are observed in Re-

sponse 1, corresponding to random modulation of the tem-
poral mask, and transient dynamics are slightly observed at
the edge of the square waveform. The temporal waveform
of Response 2 is more fluctuated than that of Response 1,
since the chaotic drive input is used, instead of the constant
wheren is the index of the input data aridis the total drive input. However, the shape of the square waveform
number of the input datay(n) is the linear combination still remains. Faster and more complex dynamics are ob-
of the nodes with trained weights of reservoir computingerved in the output of Response 3, where faster chaotic
that are compared to the valy@) as a target data of-th  drive inputis used. A variety of the chaotic waveforms may
input data.var(y) is the variance of. The NMSE for our resultin rich variation of the internal states of the nodes for
prediction task is 0.02 in Fig. 4(b), and this value indicatekearning process.
a good performance of the reservoir computing.

L
NMSE= [ 3650 - ()" var) ©
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Figure 5: (a) Temporal waveforms of (a) drive and (b) re-
sponse outputs. Drivel: constant signal, Drive2: chaotic
signal, Drive3: bandwidth-enhanced chaotic signal. Re-
sponsd is generated from Drivé (i = 1,2,3). The dots
indicate the nodes.

We used three types of drive signals to improve the per-
formance of Santa Fe time-series prediction task. Figure
5(a) shows the three fiierent drive signal without input  Figure 6 shows the performance of the time-series pre-
signal used for reservoir computing. The first signal is diction for the three types of the drive signals as the feed-
constant output, denoted as Drive 1 (the black curve in Fifpack strengthk of the response laser is changed. The
5(a)) The second one is a chaotic output generated froNMSE is plotted for the three types of the drive signals.
a semiconductor laser with optical feedback, denoted #&¢ote that consistency of the response laser is achieved in
Drive 2 (the red curve). The chaotic signal is generatethe range 0< « < 82 ns'. The NMSEs for Drive 1 (the
beforehand and recorded in a memory. The intensity aonstant signal) and Drive 2 (the chaotic signal) are almost
a constant drive signal is modulated repeatedly by the préie same values in the consistency region. It is worth noting
recorded chaotic signal to generate Drive 2. The bandwidthat the NMSE for Drive 3 (the bandwidth-enhanced chaos)
of Drive 2 is about 7 GHz. We also generate a bandwidths smaller than those for the Drive 1 and 2 in the consistency
enhanced chaotic output from two coupled semiconductoegion. The performance of the time-series prediction task
lasers, denoted as Drive 3 (blue curve). The bandwidth & improved by using the bandwidth-enhanced chaos. We
the chaotic signal is about 30 GHz. A constant drive signalpeculate that the improvement of the performance results
is modulated by using one of the three types of the drivifom rich dynamics of the response temporal waveforms,
signals and the input signal with temporal mask. as shown in Fig. 5(b).

3. Performance for chaotic drive input
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