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Abstract—We can solve the N-Queen problem, which be-
longs to a particular kind of combinatorial optimization problems,
by using the Inverse function Delayed (ID) network with normal
connections and the success rate achieves 100%. In such a case,
if and only if the state of the ID network is stationary, it always
shows an optimal solution. This feature is very useful because
of an easy judgment. However, it is hard to solve the Traveling
Salesman Problem (TSP) with this model. The problem is that the
network states between an optimal solution and the others are not
always separable.

In this paper, we propose the ID model with higher-order
synapse connections (HC-ID) to solve this problem. We demon-
strate that the HC-ID model works to separate between the opti-
mal solutions and the others very well. In addition, in computer
simulations, it is shown that optimal solutions of the TSP are also
only stationary states.

1. Introduction

We have proposed the Inverse function Delayed model
(ID model) as one of neural networks [1]. One important
feature of the ID model is to have negative resistance in its
dynamics. We consider that the ID model is a powerful tool
for avoiding the local minima problem because the negative
resistance destabilizes local minima state. We have pursued
research on solving combinatorial optimization problems
[2], associative memory [3], and so on. In particular, the
ID model can destabilize only local minima in some kinds
of the combinatorial optimization problems[2].

In such cases, the equilibrium point of global minima
converges on adjacent to x = 0 or x = 1, and the local min-
ima is distributed away from x = 0 or x = 1. We can selec-
tively cover only local minima by the negative resistance
of the ID model, and then we can destabilize them. Ad-
ditionally, we can estimate the distribution of the equilib-
rium point without solving it [4], hence we can set the suit-
able negative resistance region previously. The N-Queen
problem and 4-color problem, which belong to this kinds
of problems, have been solved at 100% success rate. In
the Traveling Salesman Problem (TSP), however, the equi-
librium points of global minima and local minima are dis-
tributed disorderly. Consequently we can’t destabilize only
local minima by using the negative resistance.

Meanwhile, in order to solve the TSP, the higher-order

Hopfield network has been proposed [5]. This model in-
cludes the higher-order synapse connections, and we can
converge the global minima to the vertexes of the output
space by using this model [6]. However the local minima
remain away from the vertex yet.

In this paper, we introduce the higher-order synapse con-
nections to the ID model. First, we show separable distribu-
tion of local minima and global minima by introducing the
higher-order synapse connections to the ID model. Then,
we consider selectively destabilizing only local minima by
using negative resistance. Moreover, we confirm it by solv-
ing a 4-city TSP as preliminary tests.

2. The Higher-Order Connection ID Model

The ID model, which has normal synapse connection,
has negative resistance in its dynamics, and has an energy
function similar to Lyapunov Function [2]. From these
characteristics, this model can avoid local minimum prob-
lem of some kinds of combinatorial optimization problems.
In this section, we propose the higher-order connection ID
model (HC-ID model). The higher-order synapse is the
multiple connection which links from multiple neuron to
one neuron, and it has been used to solve the 3-SAT prob-
lem [7].

2.1. Basic Equations

In case of the TSP, we can design the HC-ID network
with third-order synapse connection. The ID model with
third-order connection is described as follows:

τu
dui

dt
=

∑
j

∑
k

∑
l

wi jklx jxk xl

+
∑

j

∑
k

wi jk x jxk

+
∑

j

wi jx j + hi − ui, (1)

τx
dxi

dt
=ui − g(x), (2)

where ui, xi and hi are the internal state, the output and the
bias of neuron i, respectively. wi j is the synaptic weight
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Figure 1: The g-function and negative resistance region.

from neuron j to neuron i, and wi jk··· is the higher-order
synaptic weight from neurons j, k, · · · to neuron i, τu is the
time constant of the internal state, τx(� τu) is the time
constant of the output. g(x) is the inverse output function
of the Hopfield network (see later).

The following equations are derived from Eqs.(1) and (2)
as well as the ID model:

τx
d2xi

dt2
+η(xi)

dxi

dt
= −∂U
∂xi
, (3)

where

η(xi) =
∂g(xi)
∂xi

+
τx

τu
, (4)

∂U
∂xi
=

1
τu

g(x) −
∑

j

∑
k

∑
l

wi jklx jxk xl

−
∑

j

∑
k

wi jk x jxk −
∑

j

wi jx j − hi

 . (5)

From Eq.(3), it is shown that the HC-ID model is updated
by dynamics of particles subjected to inertia force and fric-
tion η(xi) in potential U. This dynamics are similar to the
ordinary ID model.

g(x) in Eq.(4) is

g(x) = f −1(x) − α
(
x − 1

2

)
, (6)

where

f −1(x) =

[
1
2

(
1 + tanh

(
βx
2

))]−1

=
1
β

ln
( x
1 − x

)
. (7)

If g(x) has an N shape as shown in Figure 1, η(xi) has a neg-
ative value [2]. This region η(xi) < 0 is called the negative
resistance. From Eqs.(6) and (7), α and β is a control pa-
rameter of the range and the gain of the negative resistance,
respectively.

2.2. The Energy Function

When the synaptic weights are symmetric (wi jkl··· =
w jikl··· = w jilk··· = · · · ), the energy function of HC-ID can

be defined as the Hopfield network or the ID model.

Ehi-ID = −
1

4τu

∑
i

∑
j

∑
k

∑
l

wi jklxix jxk xl

− 1
3τu

∑
i

∑
j

∑
k

wi jk xix jxk

− 1
2τu

∑
i

∑
j

wi jxix j −
1
τu

∑
i

hixi

+
1
τu

∑
i

∫ xi

1
2

g(x)dx +
τx

2

∑
i

(
dxi

dt

)2

(8)

Moreover, from Eqs. (1) and (2), its time derivative is

dEhi-ID

dt
= −

∑
i

η(xi)

(
dxi

dt

)2

. (9)

If η(xi) < 0, Ehi-ID increases with time like the normal con-
nection ID model. Hence the HC-ID model can also desta-
bilize only local minima if and only if local minima are in
the negative resistance region.

3. Design the HC-ID network for the TSP

3.1. The Energy Function for the TSP

When solving the combinatorial optimization problem
by using the neural network, we have to describe the prob-
lem as the energy function ET H . The optimal solutions are
assigned to the global minima of ET H .

Hence we obtain ET H of the TSP as [6]:

ET H =
A
2

∑
i

∑
x

xxi − 1

2

+
A
2

∑
x

∑
i

xxi − 1

2

+
B
2

∑
x

∑
y

∑
i

dxyxxixyi+1(1 − xxixyi+1)

+
C
2

∑
x

∑
y

∑
i

dxyxxi(xyi−1 + xyi+1)

2

, (10)

where A, B, and C are positive values, dxy is distance be-
tween city x and city y.

The first and second terms of Eq.(10) are conditions to
express the cyclic tours. The forth term expresses a squared
value of tour length subject to the cyclic tours. Since this
term is a squared value, the difference of distance is am-
plified. The third term is added purposely to separate the
equilibrium point of global minima and local minima (de-
tail will be discussed later). If the network shows cyclic
tours, this term has to be zero. Therefore it is satisfied that
the optimal solution is the minimum points of ET H subject
to the cyclic tours.

3.2. Correction of Self Weight and Bias

Since the synaptic connections are symmetric, we can
use Eq.(10) as the Eq.(8) except for the fifth and sixth
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terms. The shape of the potential depends on g(x), and
g(x) is a function of α. In order to make the effects of α
negligible in the potential, the following corrections to the
self weight and bias should be made [2]:

W =wi,i − α, (11)

H =hi + α/2. (12)

On the other hand, we want to read the stationary state
as the answer representation. Thus the equilibrium point
states that are being considered, are those where dxi/dt is
zero. Therefore, the sixth term is zero.

3.3. Distribution of the Equilibrium Point

From Eqs.(1), (8) and (10), the dynamics of the HC-ID
network for the TSP are described as follow:

τu
duak

dt
+ uak

= − A

∑
x

xxk − 1

 − A

∑
i

xai − 1


− B (1/2 − xak)

∑
x

dax(xxk−1 + xxk+1)

− 2C
∑

x

∑
y

∑
i

dxyxxi(xyi−1 + xyi+1)

×
∑

x

dax(xxk−1 + xxk+1). (13)

Since we can make undesirable states unstable in the
HC-ID model by using the negative resistance, in order
to make all local minima unstable, we have to estimate
the equilibrium points of global minima and local minima.
Meanwhile the ID network with the high-gain limit model
(β → ∞) has achieved the high performance of searching
the optimal solution [2]. Hence, we use the high-gain limit
model in this section. In such a case, the negative resis-
tance region is 0 < xak < 1, so that the output of stationary
state is only 0 or 1.

If we require that stationary states always show valid
tours as well as the higher-order Hopfield network, A has
to be satisfied with

A >max {(N − 1)BdM , dM (4(N − 2)CdM + B/2)} ,
(14)

where N is the number of cities, dM is maximum distance
between two cities. In later discussion, we assume that A
is satisfied with Eq.(14).

The equilibrium point of the inner potential can be ap-
proximated as follow:

uak '

{
−4Cd(~x) − B

2

}
(dak−1 + dak+1) (xak ∼ 0){

−4Cd(~x) + B
2

}
(dak−1 + dak+1) (xak ∼ 1)

,

(15)

where d(~x) is tour length depending on the route which is
indicated by the output vector ~x.

From Eq.(15), equation uak < 0 is always satisfied when
xak ∼ 0, thus this state is stable. On the other hand, when
xak ∼ 1, the sign of uak depends on {−4Cd(~x) + B/2}. We
require the positive sign to stabilize this unit.

Therefore, the HC-ID network has a possibility that only
the equilibrium point of global minima is stabilized when
we can set coefficient B and C to satisfy the equation [6]:

d( ~x0) <
B

8C
< d( ~x1), (16)

where d( ~x0) and d( ~x1) is the tour length of global minima
and local minima, respectively.

4. Numerical Experiments

In this section, in order to demonstrate the idea of the
previous section, we compare the HC-ID network with
the higher-order Hopfield model for solving 4-city TSP by
computer simulation.

4.1. The Appearance Rate of the Network State

First, we investigated the converged states with vari-
ous B/8C. Figure 2 shows the appearance rate of con-
verged states with the HC-ID model (right) and the higher-
order Hopfield model (left), respectively. Both results were
tested by 100 trials with random initial values and the con-
verged state of each trial was checked at 50 × τu. The hor-
izontal axis is the tour length, which is used to distinguish
the converged states, and rightmost bar shows the appear-
ance rate of the oscillation state.

In the case of the higher-order Hopfield network, as
shown in Fig. 2, not only global minima but also local
minima appear independently of B/8C as the stationary
states. In contrast, by using the HC-ID model, we can make
only minima, which correspond to smaller tour length than
B/8C, be stationary, moreover only the optimal solutions
appear subject to Eq. (16). However, the HC-ID has the
oscillation states which never appeared in the case of the
higher-order Hopfield model.

Next, we investigated three maps for 4-city TSP. The re-
sults are shown on the Table 1. Each result is also measured
by 100 trials. From results, if the network reaches a station-
ary state, the HC-ID network always shows an optimal so-
lution in contrast with the higher-order Hopfield network.

4.2. Dependence of Success Rate on α

In the ID model with normal connections, it has been
reported that the success rate depends strongly on α [4]. We
also investigated α dependence of the HC-ID network with
various β. Figure 3 shows the success rate as a function
of α. The dependency of the HC-ID network on α is very
similar to the normal ID network.
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Figure 2: The histogram of appearance state

Table 1: The appearance rate of each network states [%]. In

all maps, β = 8.0. ‘H-Hop’ means the higher-order Hopfield model.

MapA(α = 3.0) MapB(α = 3.0) MapC(α = 4.0)
HC-ID H-Hop HC-ID H-Hop HC-ID H-Hop

GM 91 46 86 53 98 57
LM 0 54 0 47 0 43
Osc 9 0 14 0 2 0

5. Conclusion

In this paper, we proposed the ID model with higher-
order synapse connection (HC-ID) to deal with the TSP.

By using the HC-ID model for the TSP, if the β is large
enough, the stationary state is on the vertex of the output
space. In such a case, only the network state representing
an optimal solution is consistent when B/8C is set between
the shortest tour length and the second shortest one. Mean-
while in case of the stationary states with the output of in-
termediate value, we can destabilize this state by the nega-
tive resistance of the HC-ID model. Therefore, the HC-ID
model is expected to be a powerful tool for solving the TSP
because it is always satisfied that the stationary state is an
optimal solution. Moreover we confirmed it in 4-city TSP
as preliminary tests by numerical experiments.
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