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Abstract—Dynamical systems have recently triggered
various interests for their potential as efficient and pow-
erful information processors. Among those recent break-
throughs, one findsReservoir Computing, a brain inspired
computational paradigm proposed in the early 2000 on the
basis of neural network concepts. The approach is mak-
ing use of the transient motion complexity developed in
the high-dimensional phase space of a nonlinear dynami-
cal system. The computed result is obtained from a linear
read-out of that transient motion in the phase space, the
motion being triggered by the proper injection of the input
information which is thus driving the transient dynamics.
Beyond this conceptual novel paradigm, hardware proofs
of principle have even been successfully proposed recently,
moreover with impressive computational capabilities. We
will report on recent advances in such hardware imple-
mentation ofNonlinear Transient Computing, in which an
ultra-fast electro-optic nonlinear delay oscillator havebeen
used to demonstrate a physical unit capable of processing
information with multi-10 GHz bandwidth capabilities.

1. Introduction

Brain-inspired computing principles have already been
addressed in the 40s however mainly from the conceptual
point of view, whereas our nowadays digital computers,
the so-called Turing-Von Neumann machines, started to be
physically implemented. After a fantastic development of
those digital computing machines, up to nowadays with ev-
erywhere present digital processors from laptop to smart
phones through super-computers, Moores’law has started
to saturate. The main reasons are the closeness of nowa-
days technologies to physical limitations, e.g. in terms of
surface heat dissipation (resulting in GHz processor speed
limitation since 2005), in terms of density of transistors (re-
lated among others, to problematic probability of faulty in-
dividual devices during fabrication), and in terms of the
control of parallelism complexity of digital architectures
(problem to design efficient algorithms for multi-core par-
allel digital processors). Beyond these physical and tech-
nological limitations, one faces more and more high com-
plexity scientific and technological challenges that can not

be fully addressed, or can not be solved confidently, or can
not be processed fast enough, by the available digital com-
puters. From this current situation, alternative paradigms
for more powerful novel computational machines are ex-
pected to be of strong importance for any future progress
of our information technology society, not only from the
conceptual point of view as it was essentially explored up
to now, but also from the physical implementation issues.
Brain-inspired approaches are offering obvious potential
solutions inspired by the Nature, with many advantages
such as fault tolerance, learning capabilities, and extremely
complex problems resolution capability.

As already stated, the brain or its huge and complex
structure of interconnected neurons, usually represents the
straightforward architecture to be investigated for the dis-
covery of novel computational paradigms. A typical and
widely explored such paradigm is Recurrent Neural Net-
works (RNN). Essential to notice, are their intrinsic fea-
tures such as complex dynamical network, thus highlight-
ing the obvious central disciplines of nonlinear dynamics
and complex systems sciences. In recently accomplished
EU project, PHOCUS [1], dedicated to Reservoir Comput-
ing [2, 3] in photonic hardware a consortium essentially
formed with nonlinear dynamics research groups, a surpris-
ing, but finally efficient approach was explored, consisting
in the use of complex nonlinear delay dynamics, in place of
the neural network dynamics. Conceptually, the idea was
to make use of a known analogy between spatio-temporal
dynamics, such as the one of a neural network, and a de-
lay dynamical system (having also an infinite dimensional
phase space). Beyond this concept, different groups suc-
ceeded in hardware demonstrations [4] of photonic Reser-
voir Computing [5, 6, 7, 8], moreover with unprecedented
state of the art performances.

Following this research direction, we have investigated
an ultra-fast electro-optic delay oscillator architecture,
from which we were expecting to show Telecom bandwidth
operation capability of photonic Reservoir Computing with
potentially record processing speed, e.g. up to 1 million
words per second for a spoken digit recognition task.

The paper is organized as follows: first we will describe
the experimental setup and its operating parameters; then
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we will explain how it can be considered as a virtually em-
ulated network of neurons to be used as a Reservoir in the
standard Reservoir Computing framework; finally we will
illustrate the processing, and its performances, when ad-
dressing through the setup a standard academic classifica-
tion task known as spoken digit recognition. We will fi-
nally conclude with perspective and future evolution of this
emerging delay dynamics based Reservoir Computing.

2. Experiment and modeling

Since our aim was to demonstration over 10-GHz band-
width processing capability of photonic Reservoir Comput-
ing, an already available but recently designed ultra-fast
electro-optic delay oscillator was chosen [9]. The broad-
band and highly controllable nonlinear dynamics setup was
indeed recently proposed in the context of optical chaos
communications, achieving state of the art distance, speed,
and transmission quality for this physical layer encryption
method based on chaotic motion and chaos synchronization
[10].

Figure 1: Electro-optic phase setup realizing a photonic
Reservoir Processor

2.1. Electro-optic phase delay dynamics

The electro-optic phase setup with an optoelectronic de-
layed feedback loop is depicted in Fig.1. The closed feed-
back loop follows the typical optoelectronic chaos archi-
tectures [11], providing the “recurrent” character of the dy-
namics. The oscillator requires also an input to inject intoit
the information to be processed. This is fulfilled by an ex-
ternal phase modulator, which simply adds the information
to the delayed self feedback. The delayed self feedback is
performed through a second electro-optic phase modulator.
The recurrent action of the Reservoir Computing concept is
thus provided by the delayed optoelectronic feedback loop,
which comprises:
(i) A length of fiber delaying the phase modulation carried
by the laser light beam by a time shiftτD;

(ii) A nonlinear function provided by the phase to inten-
sity conversion obtained from an imbalanced passive fiber-
based Mach-Zehnder -MZI- interferometer (actually con-
sisting in a conventional differential phase shift keying -
DPSK- telecom demodulator).
(iii) A photodiode converting the intensity fluctuations into
an electronic signal with a sensitivityS ;
(iv) A broadband Telecom RF driver with gainK to apply
the electronic signal to the second phase modulator which
is the one providing the recurrent feedback.
The slowest element in the feedback is typically the ampli-
fied photodiode having an electronic bandwidth of 13 GHz
with a low cut-off around 30 kHz, both frequencies result-
ing in characteristic response time ofτ andθ respectively,
corresponding qualitatively to low-pass and high-pass fil-
tering, respectively.

The main physical parameters used to adjust a “suitable”
optoelectronic implementation of the Reservoir Computing
approach are the following:
(i) The continuous wave optical powerP0 of the DFB Tele-
com laser diode (emitting at 1.5µm) allows for the weight-
ing of the feedback, which practically corresponds to the
adjustment of the spectral radius for the recurrent dynam-
ics involved in the RC approach. Too large feedback lev-
els lead to oscillatory or chaotic motions [9], which is not
suited for RC processing since the fading memory property
is not obtained. Too small values on the contrary makes
the recurrence becoming meaningless in the RC process-
ing. Optimal values corresponds empirically to a feedback
gain slightly smaller than the one leading to the first bi-
furcation of the system stable fixed point (while increasing
this gain from zero).
(ii) The laser wavelengthλ combined to the fine tuning
(within the accuracy of a fraction of the wavelength) of the
MZI optical path difference -OPD-∆ (typically achieved
via a heating wire rolled around one arm of the fiber-based
MZI) allows to determine the non linearity profile involved
in the delayed recurrence (or feedback). Setting the inter-
ference phase offsetφ0 = 2π∆/λ = ω0 δT (whereδT = ∆/c
is the time unbalancing in the MZI) to zero moduloπ leads
to a locally parabolic nonlinear contribution, whereas±π/2
modulo π corresponds whether to a nearly linear recur-
rence, or a cubic one, depending on the phase modulation
span issued from both feedback and information to be pro-
cessed.
(iii) Since the normalized feedback level requires to be
smaller than 1, if one aims at a large phase modulation span
(of the order ofπ to access significantly nonlinear operation
of the DPSK), this is obtained mainly through a proper am-
plification of the signal driving the modulation of the first
phase modulator.

According to the previous setup description, the dynam-
ical model ruling the evolution in time of our electro-optic
phase Reservoir Computer reads as follows:
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1
θ
·

∫ t

t0

ϕ(s) ds + τ ·
dϕ
dt

(t) + ϕ(t) = (1)

β [cosφ0 − cos(ϕτD + ϕ
m
τD
− ϕ(τD+δT ) − ϕ

m
(τD+δT ) + φ0)],

whereϕ(t) is the phase modulation performed by the inter-
nal feedback electro-optic modulator, whereasϕm(t) is the
phase modulation issued from the electro-optic modulator
injecting the external information to be processed. The no-
tationϕT stands for the signal delayed by the subscript time
shift, i.e. ϕ(t − τD). The parameterβ is the normalized
gain of the delayed feedback term which is proportional to
the laser optical powerP0. One could notice in Eq.(1) that
the contribution of the integral could be neglected quantita-
tively since the time unbalancingδT is usually much faster
than the integral characteristic timeθ, which might simplify
the numerical simulations.

When setting the external signalϕm to zero, Eq.(1) de-
scribes the autonomous nonlinear non-local dynamics ex-
plored in [9, 12], and which were recently explored in
these references for their rich and unusual dynamical fea-
ture issued by strongly spread multiple time phenomena
θ ≪ τD ≪ δT ≪ τ of the order ofµs, 100 ns, 400 ps,
and 10 ps respectively.

2.2. Delay dynamics emulating a network of virtual
neurones

An RNN as typically referred to in many brain-inspired
computing approaches, is a spatio-temporal dynamical
system, which internal parameters have to be optimized
through a learning procedure, so that the output response
of the network enables the computation of the expected
function of the input data. The original approach proposed
within the PHOCUS project [1], is to make use of a known
analogy between delay dynamics and spatio-temporal ones
[13] to emulate a virtual network of neurons, or more pre-
cisely its complex phase space capacity, with a nonlin-
ear delay dynamics. A significant practical advantage of
the proposal is related to the fact that delay dynamics are
already well known to have well controlled experimen-
tal implementations in photonic, moreover benefiting from
typical Telecom bandwidth operation capabilities. Addi-
tionally to the very attractive interest for a possible dedi-
cated hardware for brain-inspired computer, one could also
dream along this line about ultra-fast processing capabil-
ities thanks to the available broadband photonic Telecom
technology.

The practical solution enabling this virtual emulation of
a network through a delay dynamics, precisely involves a
Telecom technology concept known as TDM, time division
multiplexing. As shown in Fig.2, a virtual space is emu-
lated along the fast time scale motifs filling the time inter-
val defined by the long delayτD. Virtual neurons are then
corresponding to time positions within a time delay inter-
val, the number of such neurons being related to the num-
ber of time motifs of the order of the fastest time scale,τ,

Figure 2: Virtual space in delay dynamics emulating neu-
rons along the time delay interval in the feedback loop.
Two adjacent virtual neurons are separated byδτ.

which can be used to fill an entire delay interval. This num-
ber of neurons for a delay systems finds a nice match with
the known attractor dimensions, however in chaotic regime,
which scale precisely with the ratioτD/τ. Addressing each
of these neurons filling a time delay interval, is performed
through time division multiplexing. An elementary input
sample of information is sent to each of these neurons with
a specific coupling coefficient. The next sample will be
spread through the same method, but one time delay af-
ter, with the same set of coefficients (defined through a so-
called input mask) attributed to each of the virtual neurons.
This method of information injection into the virtual net-
work corresponds to the well known input layer of classical
neural network computing methods.
A similar but slightly different method is used to extract the
output result from the photonic RC response (see [4, 5] for
more details). The continuous time response of the delay
dynamics with respect to the input information flow is first
sampled. The samples are then convolved with a sequence
of learned coefficients to provide the answer to the initial
problem. These coefficients are obtained through a ridge
regression procedure utilizing a set of known couples of
(RC response, answer or calculation result), see the Read-
Out matrixWr

jk in Fig.2.

3. Testing the computational power

In order to compare the computational capability of our
broadband electro-optic phase delay dynamics, we repro-
duced a classification test which has already been suc-
cessfully conducted for the first demonstration of photonic
Reservoir Computing [5].
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3.1. Spoken Digit Recognition task

The test consists in the recognition of digits between 0
and 9, within a standard database of 500 such digits. The
digits are pronounced by 5 different female speakers utter-
ing ten times the ten digits. We refer to the previous litera-
ture for more details about this test [14, 4, 5].
The essential of the photonic hardware processing consists
in the injection of 500 signals corresponding to each of the
mask-encoded digits, and then the recording by an ultra-
fast digital scope of each transient response from the EO
phase delay dynamics (the Reservoir). The learning (ridge
regression from a subset of the recorded 500 responses) and
the testing (convolution with the learned coefficients, per-
formed on the complementary subset of the Reservoir re-
sponses) were operations performed off-line on a standard
computer. Through learning algorithms are for the mo-
ment necessarily implemented in a standard digital com-
puter, the Read-Out operation can in principle be designed
physically, thus allowing a real time ultra fast recognition.

3.2. Speed and Word-Error-Rate performance

In order to process all the 500 digits, we have followed a
similar procedure with respect to the one described in [5],
excepting for the following issues:
- The total delay resulting essentially in the interconnected
pigtails of the different photonic components, was mea-
sured to be 63.33 ns±8 ps. This suggested to slow down
the motion with an additional low pass filter with 566 MHz
frequency cut-off, resulting inτ ≃ 284 ps, which arbitrar-
ily defines as in [4] a neuron spacingδτ = τ/5 ≃ 56.8 ps
(thus imposing the input sampling frequency of the mask-
encoded data to 17.6 GHz). In order to have a compara-
ble size in processing neurons (of the order of 400), 3 un-
masked input data were chosen to fit the time delay dura-
tion, resulting in 371 neurons per mask-encoded input, or
1113 neurons within one time delay.
- The time varying response for the 371 virtual neurons was
then recorded at 80 GS/s by a real time digital scope, thus
allowing for the choice among 5 samples in the Read-Out
processing.
With these settings, the average duration of a spoken digit
being around 60 original samples (each of which being
spread over the 371 virtual neurons), the average dura-
tion required for each digit processing by our photonic EO
phase Reservoir amounts to ca. 1.3µs. This corresponds to
a processing rate close to one million digit recognized per
second.
The word error rate is slightly degraded compared to pre-
vious results, however staying at a very good level with a
best operating point slightly below 1%.

4. Conclusion

We have proposed an electro-optic phase delay dynamic
which can be used as a photonic RC. The Telecom band-

width capability of the setup could allow for ultra-fast
information processing, with the efficiency and compu-
tational power capability provided by RC. Spoken Digit
Recognition task has been implemented, demonstrating po-
tential recognition close to 1 million words per second,
with reasonably good word error rate below 1%.
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