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Abstract—In this paper, we investigated common noise-
induced synchronization of nonidentical chaotic oscilla-
tors. We used the Rössler oscillator and the Lorenz oscil-
lator and found that the synchronizabilities in the Rössler
oscillator and the Lorenz oscillator are different. To exam-
ine why these chaotic oscillators exhibit different synchro-
nizabilities by common noise-induced synchronization, we
analyzed contraction regions of these oscillators. As a re-
sult, we found that common noise-induced synchronization
of nonidentical chaotic oscillators relates to their contrac-
tion regions.

1. Introduction

Common noise-induced synchronization has been ob-
served theoretically and experimentally in various nonlin-
ear dynamical systems: for example, neural systems[1, 2],
laser systems[3] and so on. It has also been shown that
common noise-induced synchronization can be observed
in a general class of limit-cycle oscillators[4]. Common
noise-induced synchronization using the chaotic oscilla-
tors has also been numerically investigated. For exam-
ple, Zhou and Kurths numerically investigated the noise-
induced synchronization of chaotic oscillators[5]. They
used the Rössler equation[6] and the Lorenz equation[7]
and showed that identical Lorenz systems[7] can per-
fectly synchronize when large common white Gaussian
noise is applied. They also showed that a nonidentical
Rössler system exhibits phase synchronization with white
Gaussian noise. In our previous study, we experimen-
tally and numerically investigated common noise-induced
synchronization[8, 9]. We investigated common noise-
induced synchronization of chaotic oscillators using elec-
tric circuits[8]. We also performed numerical experiments
of common noise-induced synchronization those of mathe-
matical models[9].

In this paper, to investigate why nonidentical chaotic
oscillators synchronize by common noise, we focused on
the chaotic dynamics. In our numerical experiments, we
used the Rössler equation[6] and the Lorenz equation[7]
as chaotic oscillators. We clarified that the tendency of
synchronization is different in the Rössler oscillator and
Lorenz oscillator. In addition, we show why these non-
identical chaotic oscillators are synchronized by common

noise.

2. Numerical experiments

In this section, we explain how numerical experiments of
common noise-induced synchronization in chaotic oscilla-
tors are conducted in this paper. First of all, we defined the
noise strength based on signal-noise ratio (SNR) described
by the following equation:

SNR = 10 log10
S
N
, (1)

where S is the variance of outputs from chaotic oscillators
without applied noise and N is the variance of noise.

In our numerical experiments, we used two uncoupled
Rössler oscillators[6] and Lorenz oscillators[7], respec-
tively. The Rössler oscillator is described by the following
differential equations:

dxi

dt
= −(yi + zi) + Dxξ,

dyi

dt
= µixi + ayi + Dyξ,

dzi

dt
= b + zi(xi − c)x + Dzξ,

(2)

where a, b, c and µi (i = 1, 2) are parameters. The param-
eters a, b and c in Eq. (2) were set to a = 0.2, b = 0.2
and c = 5.0 in our numerical experiments. The parame-
ter µi is a parameter which make the oscillators (Eq. (2))
nonidentical and these parameters are set to µ1 = 1.0 and
µ2 = 0.95. ξ is a white Gaussian noise whose average and
variance are described as: 〈ξ〉 = 0 and 〈(ξ − 〈ξ〉)2〉 = 1. DN

(N ∈ {x, y, z}) is a parameter which controls the variance
of white Gaussian noise. In our numerical experiments, we
applied common noise to the terms of x, y and z, respec-
tively. When we applied the common noise to x, we set
the noise strength DN as Dy = 0 and Dz = 0. In case of
applying common noise to y, we set the noise strength DN

as Dx = 0 and Dz = 0. In case of applying common noise
to z, we set the noise strength DN as Dx = 0 and Dy = 0.

We also used the Lorenz equation[7] as a chaotic oscilla-
tor. We performed the numerical experiments of the noise-
induced synchronization of the Lorenz oscillator described
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by the following differential equations:

dxi

dt
= ρ(−ωixi + yi) + Dxξ,

dyi

dt
= −xizi + rxi − yi + Dyξ,

dzi

dt
= xiyi − bzi + Dzξ,

(3)

where ρ, r, b and ωi (i = 1, 2) are parameters. We set these
parameters to ρ = 10, r = 28 and b = 8/3. The nonidenti-
cal parameter ωi is set to ω1 = 1.0 and ω2 = 0.95. We also
used the parameters DN and ξ which are the same as in the
case of the Rössler oscillator. In our numerical experiments
of common noise-induced synchronization, we performed
Eqs. (2) and (3) using the Euler-Maruyama method[10].

To evaluate the synchronizability of common noise-
induced synchronization of these chaotic oscillators, we
used cross correlation coefficient. The cross correlation co-
efficients RN (N ∈ {x, y, z}) is described by the following
equations:

Rx =
σx1 x2

σx1σx2

, Ry =
σy1y2

σy1σy2

, Rz =
σz1z2

σz1σz2

, (4)

where σx1 x2 , σy1y2 and σz1z2 are covariances of output time
series xi, yi and zi (i = 1, 2) of two Rössler oscillators or
two Lorenz oscillators, and σxi , σyi and σzi are standard
deviations of outputs xi, yi and zi of these chaotic oscilla-
tors.

We also focused on the phase difference whether the
chaotic oscillators synchronize by common noise. To in-
vestigate the phase of the chaotic oscillators and the phase
difference between the chaotic oscillators, we used the
method based on the Poincaré section. We defined the
phase θi (i = 1, 2) of two Rössler oscillators and the phase
difference φ(t) as follows:

θi(t) = tan−1 yi(t)
xi(t)
, (5)

φ(t) = θ1(t) − θ2(t), (6)

where xi(t) and yi(t) are outputs from the Rössler oscilla-
tors, respectively.

When we calculated the phase and the phase difference
of the Lorenz oscillator, we used the method based on the
Poincaré section in Ref. [11]. We defined the phase θi(t)
and the phase difference φ(t) by the following equations:

ui(t) =

√
x2

i (t) + y2
i (t), (7)

θi(t) = tan−1 zi(t)
ui(t)
, (8)

φ(t) = θ1(t) − θ2(t), (9)

where xi(t), yi(t) and zi(t) are outputs from the Lorenz oscil-
lator and ui(t) is a variable to convert the three dimensional
space to a two dimensional plane for the Lorenz oscillator.
We evaluated the synchronizability using Eqs. (4)-(9).

Figure 1: Cross correlation coefficients between the chaotic
oscillators. Red, green and blue lines show the results of
the Rössler oscillator. Purple, light blue and yellow lines
show the results of the Lorenz oscillator. The results of ap-
plying common noise to (a) the variable x, (b) the variable
y and (c) the variable z.

3. Results

Figure 1 shows the results of the cross correlation co-
efficients between two chaotic oscillators. Focusing on
the results of the Rössler oscillator, we observed that the
cross correlation coefficients increase in the case of apply-
ing common noise to x and y. However, the maximum
value of cross correlation coefficients of the Rössler oscil-
lator is 0.3. It means that only weak synchronization can
be observed in the Rössler oscillator. We confirmed that
the Rössler oscillator is diverged if the noise level is below
8dB in case of applying common noise to x and y. In case
of applying common noise to z, we also confirmed that the
Rössler oscillator is diverged with noise level below 34dB.

From the results of the Lorenz oscillator, we found
higher cross correlation coefficients than those of Rössler
oscillator in all cases (Fig. 1). We also found that the high-
est cross correlation coefficients are observed in case of ap-
plying common noise to y. In case of applying common
noise to z, we can also observe high cross correlation only
in the output of z.

Figure 2 shows the transition of the peak of the fre-
quency distributions of the phase difference between the
chaotic oscillators. We found that the Rössler oscillator
shows weak phase synchronization only in the case of ap-
plying common noise to x. We also found that the Lorenz
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Figure 2: Transition of the peak of the frequency distri-
butions of the phase difference between the chaotic oscil-
lators. Red line shows the results of the Rössler oscillator
and blue line shows the results of the Lorenz oscillator. The
results of applying common noise to (a) the variable x, (b)
the variable y and (c) the variable z.

oscillator shows phase synchronization below 0dB.
Considering these results of cross correlation coefficients

and phase synchronization, we can summarize the tendency
of noise-induced synchronization of the chaotic oscillators
as follows: the Rössler oscillators can be synchronized by
smaller common noise than the Lorenz oscillators. How-
ever, the maximum synchronizabilty of the Rössler oscilla-
tors is low. On the other hand, the Lorenz oscillators can
be synchronized very well by common noise. However, to
make the Lorenz oscillators synchronize, we need larger
noise than that of the Rössler oscillators. We also found
from the results of the cross correlation coefficients and the
phase synchronization that the highest synchronizability is
realized in the case of applying common noise to the output
y of the Lorenz oscillator.

We discuss why these chaotic oscillators show the dif-
ferent tendency of synchronization. In Ref. [5], Zhou
and Kurths examined contraction region of chaotic oscil-
lators and showed that the contraction regions influenced
common noise-induced synchronization. They showed that
complete synchronization can be achieved by the contrac-
tion region when identical chaotic oscillators are used.
Therefore, we investigated how the contraction region af-
fected common noise-induced synchronization of noniden-
tical chaotic oscillators.

The contraction region is defined as follows: In the
contraction region, the real parts of eigenvalues λ j ( j =
1, . . . ,M, M ∈ N ) which are calculated by the Jacobian
matrix of chaotic oscillators are all negative. In our cases,
we calculated the eigenvalues λ j ( j = 1, 2, 3) of the Jaco-
bian matrix.

The Jacobian matrix of the Rössler oscillator is described
as follows:  0 −1 −1

1 a 0
z 0 x − c

 , (10)

where a and c are parameters of the Rössler oscillator and
x and z are variables of the Rössler oscillator. The Jacobian
matrix of the Lorenz oscillator is described as follows: −σ σ 0

r − z −1 −x
y x −b

 , (11)

where σ, r and b are parameters and x, y and z are variables
of the Lorenz oscillator.

We calculated the contraction region of the chaotic at-
tractors using Eqs. (10) and (11). We also calculated how
frequent trajectories of these chaotic attractors exist in their
contraction regions.

Table 1 shows the frequency that of the Rössler oscillator
and the Lorenz oscillator stay in the contraction regions. In
case of the Rössler oscillator, the frequences in the contrac-
tion region are low when we do not apply common noise to
the Rössler oscillator. In addition, when we applied com-
mon noise to various variances of the Rössler oscillator, we
cannot observe the increase of the frequency in the contrac-
tion region.

In contrast, in case of the Lorenz oscillator, the rate of
trajectories within the contraction region is higher than that
of the Rössler oscillator even in the absence of noise. By
applying noise, we can observe the increase of the rate
within the contraction region. In particular, the highest fre-
quency in the contraction region is achieved when applying
common noise to y. We also found that the highest synchro-
nizability is realized in case of applying common noise to
the output y of the Lorenz oscillator. From these results, it
is indicated that common noise-induced synchronization of
nonidentical chaotic oscillators relates to those of contrac-
tion region.

4. Conclusion

In this paper, we investigated the common noise-induced
synchronization of nonidentical chaotic oscillators. We
used two uncoupled Rössler oscillator and Lorenz oscilla-
tor, respectively. To evaluate the synchronizability of these
chaotic oscillators, we used the cross correlation coefficient
and the phase difference between these chaotic oscillators.
As a result, we found that the tendency of synchronization
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Table 1: The frequencies that trajectories of chaotic oscillators exist in their contraction region.

Rössler oscillator Lorenz oscillator
Noise applied to Variance of Noise (SNR) Average [%] Noise applied to Variance of Noise(SNR) Average

None - 3.326 None - 45.771
x 1.5 (10.2dB) 2.453 x 100.0 (-23.1dB) 49.470
y 1.5 (9.6dB) 2.395 y 100.0 (-22.2dB) 79.866
z 0.005 (53.6dB) 3.331 z 100.0 (-22.6dB) 55.377

induced by common noise is different in the Rössler oscil-
lator and the Lorenz oscillator. To investigate this tendency,
we investigated the contraction region of these chaotic os-
cillators. We calculated how frequent the trajectories of
these chaotic oscillators stay in their contraction regions.
As a result, we found that the common noise-induced syn-
chronization of nonidentical chaotic oscillators relates to
their contraction regions.
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