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Abstract—In this work, we present an example of
bio-inspired dynamical network, developed to help in
studies of motor-related processes in the brain. The
presented model aims to mimic the functionality of a
cell population in 7a parietal region. The obtained
results help us in studying the experimental data set,
described in [1]. This approach enables testing the
influence of several relevant parameters of the data
analysis procedure presented in [2].

1. Introduction

The neural network presented in this paper is a part
of a larger study of hand-eyes coordination and motor
intention in parietal cortex. The foundation for this
work is described in [1]. The lab monkey is required
to perform a complex set of behavioral tasks, while
spike trains are collected from the 7a parietal area.
In our previous work [2], we describe the machine
learning based methods for detecting motor intention
from the mean firing activity of simultaneously
monitored cells. The corresponding spike trains are
first converted into vectors of spike rates. In the first
test, the mean activity is calculated for each cell and
each epoch in the experiment, and the data label is
assigned in accordance to that epoch. If hand or eye
motion is planned, prepared, or executed in an epoch,
the resulting spike rates vector is labeled as motor
intention. Otherwise, when a movement is absent,
we assign no intention label. For the second test,
a sliding window is introduced for calculating spike
rates. The set of allowed window positions spans the
entire duration of a task. A spike rate is calculated
for each position. The window length represents
an additional parameter that influences the result.
Labels are, again, assigned using the relative position
of the window with respect to experimental epochs.
Support vector machine classifier (SVM) is applied for
discriminating between presence and absence of motor
intention. Literature on brain-computer interface
presents many methods for extracting various motor
parameters, used to control a computer cursor or
prosthetics [8]. In this work, we are focused on
analyzing the processes in the recorded cortex region,

rather than building an operating system, useful for
making prosthetics. The results, presented in [2],
show that the presence of motor intention in the
studied region can be successfully identified, from a
randomly chosen cell set. In average, for a randomly
selected recording site, the classification precision
remains between 25% and 30%. Although the analysis
presented in [2] revealed interesting conclusions,
experimentally imposed limitations disable testing
several relevant parameters. First, the maximal
number of simultaneously recorded cells is limited to
fourteen. Also, the influence of window size cannot
be properly investigated. These issues are assessed
through the model described in this paper.
The presented artificial neuronal network relies on
concepts of liquid state machines (LSN) [7] and echo
state networks (ESN)[6]. Each cell in the network
is represented using a leaky integrate and fire model
complemented with the model for chemical synapses
[5]. No special network structure is imposed, the
connections are chosen randomly. The LSN is used
in the network selection procedure: a large number
of networks is generated, according to certain rules.
The motor output layer is trained by linear regression
over generated spike trains. The most successful
networks are selected. Then, a small number of
the states in the networks are chosen randomly,
simulating the experimentally chosen neurons, and
the corresponding spike trains are classified by
SVM as in the experimental data analysis. We will
refer to this result as ’classification outputs’, in or-
der to distinguish them from the motor output signals.

2. Behavioral tasks

The complex set of experiments, presented in [1], is
replaced by only two tasks considered here. Since de-
tection of motor intention is in the focus of this work,
only one example of a task involving a movement, and
a task with no movements are considered. Fig. 1 shows
the tasks of interest, and the corresponding input sig-
nals for the model. Task on the top left figure requires
movement of the hand toward the presented target.
The epochs involved in preparation for the movement
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Figure 1: Abstract representation of behavioral tasks.

and the movement itself are shaded. In these inter-
vals we expect to observe motor intention. The three
signals below are showing the two inputs and the de-
sired output of the model. The first pulse is the in-
struction to move, the GO signal, and the second one
corresponds to the presentation of the target on the
screen. It is ON during the two motor-related epochs,
and appears in one of eight inputs (corresponding to
the eight target positions in the experiments described
in [1]). The last pulse shows the ideal motor output of
the network, the motor intention appears during the
two movement related intervals. On the right side of
the figure, the task with no movement required is de-
scribed. Here the target is presented on the screen,
i.e. the pulse appears on one of the eight inputs, but
the instruction to move, i.e. the GO signal, is absent.
Therefore, at the motor output, no activity is expected
(as shown with the third signal).

3. Proposed Model

Network nodes are modeled as leaky integrate and
fire (LIF) neurons [5], with the membrane potential of
the neuron i, ui(t), given as,

τm
i

dui

dt
= −ui(t) + Ri · Ii(t) (1)

Ri is the cell membrane resistance, and τm
i = Ri ·Ci

is the neuron time constant. The second term on the
right side, the input current, is defined as

Ii(t) = Ji + Ie
i (t) + In

i (t) +
∑

j

wij

∑

f

αij(t− tfj ) (2)

where Ji accounts for the internal constant current,
Ie
i (t) for the external current, In

i (t) for the diffusive
noise (modeled as the Gaussian zero mean white pro-
cess, with the variance σn

i ), and the last term describes
the synaptic current (where α(·) describes the shape of
the post-synaptic current pulse, and is given in the lit-
erature [5]). Finally, the membrane potential resetting
condition is given as

t(f) : ui(t(f)) = θi. (3)

Figure 2: Proposed model architecture

where θi stands for the reseting threshold. Immedi-
ately after the spike event t(f), the membrane po-
tential is reset to a new value ur

i < θi and it stays
in the same state during the refractory time τ r

i .
Therefore, the model for the i-th cell is defined with
the listed equations and the set of parameters Ci =
{τm

i , Ri, θi, τ
r
i , Ji, I

e
i (t), σn

i , {wij}j , qi, ∆ij , τ
s
ij}, where

wij is the synaptic weights, for the synapse connect-
ing the neuron j with the neuron i. The last three
parameters define the function α(·), and represent the
normalization factor (qi), synaptic time constant (τs

ij),
and synaptic delay (∆ij).

The network is shown in fig. 2; it is organized in
the three layers: input, internal layer, and output.
The input layer mimics some aspects of the experi-
ments described in [1], precisely the activation of one
of the eight targets (PT1, . . . , PT8) and the GO sig-
nal. Therefore, it consists of nine inputs, connected
to nine excitatory LIF neurons which convert pulses
into spikes. Therefore, the input layer is completely
defined by the set of parameters Lin = {Cin

i }i=1...9,
i.e. the set of parameters for the nine input cells.
The internal layer is an approximative representation
of the neural population in the 7a area of the pari-
etal cortex, analyzed in details in [1]. The network is
composed of N LIF neurons, NE excitatory and NI

inhibitory cells, and is described by the set of param-
eters L = {CE

i , CI
j }i=1,...,NE , j=1,...,NI

.
The motor output layer consists of eight analog linear
neurons, each of them performing a linear combination
of the outputs from the internal layer:

Uout
i (t) = R

∑

j

wout
ij

∑

f

αout(t− t
(f)
j ) (4)

The potential Uout
i (t) corresponds to the output MTi.

Thus, output layer is defined by Lout = {Cout
i }i=1..8.

Since we rely on LSM paradigm, only wout
ij are trained;

all the other parameters are fixed in advance.
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4. Networks generation and selection proce-
dures

The procedure for constructing networks of desired
properties is summarized in the following steps:

1. Randomly generate network parameters that
should be fixed in advance.

2. Train the output layer coefficients, wout
ij .

3. Evaluate outputs classification error.

4. If the number of outputs with classification error
≤ 10% is > 6 the network is selected, otherwise
discarded.

The neuron and synapse parameters are selected ac-
cording to the approach proposed in [4]. The following
parameters are kept constant for all the network lay-
ers: τm

i = 30 ms, Ri = 10 MΩ, θi = 15 mV, τ r
i = 3

ms for excitatory and τ r
i = 2 ms for inhibitory neu-

rons, and σn
i = 5 mV. Also, Ji ∼ Unif [13.5, 14.5]nA

and ur
i ∼ Unif [13.5, 14.5]mV for all the layers, where

Unif [·] denotes the uniform distribution over the in-
terval given between brackets. The remaining model
parameters are set for each layer separately.

The currents, leakage resistances and neuron thresh-
olds of the input layer are scaled in order to ensure
the correct conversion of input signals into spikes.
Randomly selected 20% of all the possible synaptic
connections between the input and the internal layer
are set as: win

ij = 10−2, τs,in
ij ∼ Unif [2.5, 3.5], and

∆in
ij ∼ Unif [0.1, 1]. The remaining connections are

removed from the model.
The internal layer is critical for achieving the desired
properties and performance. The main goal is to ob-
tain as long memory as possible, while keeping the
echo state property [6]. No general design criteria is
available in the literature. We adopted the procedure
presented in [4], setting 80% of the neurons as exci-
tatory and 20% as inhibitory. Connections topology
is random with only 20% of all the possible connec-
tions being non-zero. Synaptic weights for the exci-
tatory cells are drawn from a Gaussian distribution
with mean wmE and standard deviation wmE · 10−3,
while for the inhibitory cells Gaussian distribution
has mean equal −2 · wmE and the same standard
deviation. The other parameters are generated as:
τs,E
ij ∼ Unif [2.5, 3.5]ms, τs,I

ij ∼ Unif [5, 7]ms, and
∆E

ij , ∆I
ij ∼ Unif [0.1, 1]ms. The difference in de-

sign strategy, with respect to [4] is that the network
presented in this work is unstructured, with only the
sparsity criteria imposed, and the average value for
connection strength wmE is the only parameter to be
tuned. The parameters for the output layer are set as:
τs,out
ij = 20 ms, ∆out

ij = 0 ms.
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Figure 3: Average classification accuracy for different
numbers of available neurons and W .

For networks generated according to the given pro-
cedure, the output coefficients wout

ij are calculated
through the linear regression training procedure. The
energy of the output pulses is computed and com-
pared with a fixed threshold value; all the output
pulses whose energy is above threshold are considered
as activation of the output, while the energy below the
threshold means no activation. Finally, wmE is tuned
through a grid search optimization in order to maxi-
mize the number of selected networks. A network is
selected if it has at least 6 operating outputs, i.e. out-
puts that have the classification error lower or equal
to 10%. The procedure results in wmE set to 10−3.

5. SVM classifier training and testing

In order to repeat the analysis presented in [2], we
substituted the motor output layer with a block of
spike to rate conversion followed by an SVM classi-
fier. The classifier is implemented using the publicly
available software package [3]. The two parameters,
the kernel width and the regularization coefficient, are
chosen through the grid search procedure. In order to
model the two different analysis procedures presented
in [2] we used two different methods to compute spike
rates. In the first method the whole epoch of interest
is used to compute a rate for each neuron, and obtain
the rate vector R. In the second method, the whole
epoch of interest is divided into non overlapping win-
dows of constant length, a spike rate is computed for
each neuron, and the rate vector is obtained for each
window position. The presented results are obtained
for the window size of 10, 30, 50, 80 ms for the second
method, and according to the first method. For each
window choice, M% of all the neurons are selected
(where M = 50%, 30%, 20%, 10%, 5%), and their spike
trains are used for calculating spike rate vectors. They
are, then, used for training and testing the classifier.
Its performance is described by classification accuracy.

The average performance for the method two, ob-
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Figure 4: Average classification accuracy for different
values of W and 20 neurons available.
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Figure 5: Average classification accuracy for different
number of available neurons, with W=30 ms.

tained for different W and the number of available
neurons, is shown in Fig. 3. These curves are obtained
by averaging the performance of 200 networks of size
100. A drop of average performance is observed when
the number of available neurons decreases. In Fig.4
the best, the average, the worst and individual values
of a sample of 50 networks are shown: each scatter
corresponds to the results obtained with 20 neurons
available, averaged over 100 random selections. By in-
creasing W , the average value increases, except when
the whole epoch is used. While the average perfor-
mance for most of the networks is improved, a consis-
tent group of them is performing significantly worse,
degradating the average value. This is due to the net-
works memory, which is not controlled in the gener-
ation procedure. In Fig.5 the individual performance
for different numbers of available neurons is shown.
The decrease in average performance, when reducing
the number of available cells, is due to spread of per-
formance distribution and a condensation around the
lower bound. The analysis revealed a small group of
networks with around 90 % accuracy when only 5 cells

are available.

6. Conclusions

In this work we presented an example of bio-inspired
network, based on LSM approach [7]. The model relies
on LIF neurons and chemical synapses. The network
generation is random, with biological motivated tun-
ning of the main parameters. The proposed model
is able to learn and solve, with a satisfactory level
of accuracy, an approximate representation of the be-
havioral tasks presented in [1]. The obtained results
highlighted the critical role of the number of simulta-
neously available cells and the length of the window
used for the spike rates computation. The presented
performance bounds are similar to those obtained by
the analysis of the experimental data, given in [2].
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