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1. Abstract

We, first, experimentally stabilize a quasi-periodic orbit
in a switched-capacitor asymmetric 3-neuron chaotic neu-
ral network (CNN) circuit through a pole-placement con-
trol. The test method for quasi-periodicity suitable for
noisy data is used to confirm the results. Second, we extend
the 3-neuron CNN to a 5-neuron CNN. From the numeri-
cal simulations, we confirm the effectiveness of the control
procedure to stabilize an unstable quasi-periodic orbit in
the 5-neuron CNN.

2. Introduction

Chaos controls aim at stabilization of an inherent un-
stable periodic orbit in the chaotic attractor. An example
of such chaos control methods is the OGY method pro-
posed by Ott, Grebogi, and Yorke [1]. Another example is
the delayed feedback control method proposed by Pyragas
[2]. Unlike these chaos controls, Ichinose et al. proposed a
method to stabilize an unstable quasi-periodic orbit instead
of the periodic one [3][4].

They demonstrated the stabilization of the unstable
quasi-periodic solution using the pole placement method
[5] in an asymmetric chaotic neural network (CNN) [6]
through numerical simulations. However, the effectiveness
of the proposed method has not been confirmed by phys-
ical experiments. In [7], we constructed the asymmetric
CNN with 3 chaotic neurons using a switched-capacitor
circuit technique in order to experimentally observe the sta-
bilization of the quasi-periodic orbit. The experimental re-
sults confirmed that the stabilization technique is effective
in real systems with noise and mismatches among circuits
elements.

In this paper, we first continue the circuit experiments
with the 3-neuron CNN with different set of the parameter
values from that in [7]. Second, we extend the 3-neuron
CNN to a 5-neuron asymmetric CNN. Then, we confirm
the stabilization of the quasi-periodic orbits through nu-
merical simulations.

3. Stabilization of an unstable quasi-periodic solution
in the asymmetric CNN

The chaotic neural network (CNN) used below is based
on the chaotic neural network model proposed in [6], but
we introduce an asymmetric mutual connections among
neurons. The asymmetric CNN with 3 chaotic neurons [7]
is defined as

x1(n + 1)=kx1(n) − (α − β)y1(n) + a

−β+d
2

y3(n)− β−d
2

y2(n)+F · u(n), (1)

x2(n + 1)=kx2(n) − (α − β)y2(n) + a

−β+d
2

y1(n)− β−d
2

y3(n)+F · u(n), (2)

x3(n + 1)=kx3(n) − (α − β)y3(n) + a

−β+d
2

y2(n)− β−d
2

y1(n)+F · u(n), (3)

where xi(n) (i = 1, 2, 3) is the internal state of the neuron
i at discrete time n, yi(n) = f (xi(n)) is the output of the
neuron i, k is a refractory decay constant, α is a scaling pa-
rameter of the refractoriness, a is an external input, β is the
basic coupling strength, d introduces the asymmetric con-
nection strength, u(n) is a control input, and F is a control
gain.

The output function f (·) is sigmoidal and given by

f (x) =
1

1 + e−x/ε , (4)

where ε gives the steepness of the function. When u(n) = 0,
i.e., without control, the CNN given by Eq. (1) to Eq. (3),
has a complete synchronized solution of x1(n) = x2(n) =
x3(n) by certain values of parameters. In this case, the be-
havior of the CNN can be reduced to that of a single neuron
as

x1(n + 1) = kx1(n) − αy1(n) + a. (5)

Therefore, the fixed point x∗, if exist, of the CNN satisfies
x∗ = kx∗ − α f (x∗)+ a. Defining γ = f ′(x∗) and solve for x∗

yields

x∗ = −ϵ log
1 − 2ϵγ ±

√
1 − 4ϵγ

2ϵγ
. (6)
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Therefore, the completely synchronized CNN has the fixed
point of x∗ = x1(n) = x2(n) = x3(n), which is referred to as
the complete synchronization fixed point.

With the eigenvalues of the Jacobian matrix J at x∗ given
by Eq. (7), we can examine the stability of x∗.

λ1 = k − αγ, λ2,3 = k −
(
α − 3

2
β

)
γ ± i

√
3

2
dγ. (7)

The real eigenvalue λ1 corresponds to the synchronous
direction of the eigenvector. On the other hand, the com-
plex eigenvalues λ2 and λ3 give the asynchronous direc-
tion of the eigenvector, which contribute to desynchroniza-
tion. By destabilizing λ2 and λ3 while keeping λ1 stable,
the fixed point x∗ will bifurcate to a stable quasi-periodic
solution. In order to realize the bifurcation of x∗ to the
quasi-periodic solution, we use the state-feedback control
method based on a pole-placement technique [5].

The bifurcation diagram of x1(n) when we change the
value of a is shown Fig. 1(a). The parameter values of
k = 0.7, α = 1, ε = 0.05, β = 2/3, and d = 0.3 were
used to obtain the figure. In Fig. 1(a), the dashed-line indi-
cates the point where a = 0.059776. When a > 0.059776,
|λ1| > 1 (unstable); as a result, a period-doubling bifurca-
tion occurs. In addition, the solid line in Fig. 1(a) shows the
point where a = 0.140223. When a > 0.140223, λ2 and λ3
become unstable because |λ2,3| > 1. As a result, an unsta-
ble quasi-periodic solution occurs by the Neimark-Sacker
bifurcation. In this case, a synchronized chaotic solution is
stabilized.

Next, we replace λ1 with a stable λ′ by the state feed-
back technique with pole placement method [9], using the
additional feedback input u(n) given by

u(n) = y1(n) + y2(n) + y3(n) − 3f (x∗). (8)

In this case, the feedback gain can be set as

F =
λ′ − k + αγ

3γ
. (9)

The bifurcation diagram of x1(n) when we change a is
shown in Fig. 1(b) with λ′ = −0.9, k = 0.7, α = 1,
ε = 0.05, β = 2/3, and d = 0.3. As shown in Fig. 1(b), λ1
does not bifurcate even if the value of a passes the dashed-
line 1 , which corresponds to the case where |λ1| > 1 in
Fig. 1(a). On the other hand, when the value of a crosses
the line 2 , a quasi-periodic solution is generated because
|λ2,3| > 1.
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Figure 1: The bifurcation diagram of x1(n) when we swept
a, (a) without, and (b) with the feedback control. ((a) and
(b): k = 0.7, α = 1, ε = 0.05, β = 2/3, and d = 0.3), (b);
λ′ = −0.9).

4. Numerical simulations and circuit experiments

The CNN with the feedback input u(n) was implemented
with the switched-capacitor circuit technique [8]. The cir-
cuit equations of the CNN circuit proposed in [7] are given
by

Vx1(n + 1) =
(
1 − Ck

Ci

)
Vx1(n) −

C f

Ci
Vy1(n) +

Ca

Ci
Va

−C13

Ci
Vy3(n)−C12

Ci
Vy2(n)+

Cu

Ci
Vu(n), (10)

Vx2(n + 1) =
(
1 − Ck

Ci

)
Vx2(n) −

C f

Ci
Vy2(n) +

Ca

Ci
Va

−C21

Ci
Vy1(n)−C23

Ci
Vy3(n)+

Cu

Ci
Vu(n), (11)

Vx3(n + 1) =
(
1 − Ck

Ci

)
Vx3(n) −

C f

Ci
Vy3(n) +

Ca

Ci
Va

−C32

Ci
Vy2(n)−C31

Ci
Vy1(n)+

Cu

Ci
Vu(n). (12)

In the following simulations and experiments, we use
the network parameters of k = 0.7, α = 1, β = 0.66, d =
0.2, and F = 0.26. Note that these values are different from
those used in [7]. In order to set these parameter values by
the capacitor ratios in the circuit in [7], we used the capac-
itance values listed in Table 1.

Figure 2(a) shows the bifurcation diagram with a as a
bifurcation parameter obtained from the numerical simula-
tion without the feedback control. The bifurcation diagram
changed with the feedback control as shown in Fig. 2(b).
In the simulations, Gaussian noises were added consider-
ing the noises in the experiments.

On the other hand, the corresponding measured bifurca-
tion diagrams obtained through the circuit experiments are
shown in Fig. 3. That is, Fig. 3(a) shows the measured bi-
furcation diagram when we swept Va without the feedback
control, while that with the feedback control is shown in
Fig. 3(b). In Figs. 3(a) and (b), the voltages Va and Vx1(n)
were normalized by 4 V and 5 V, respectively, for easy
comparison to the results in Figs. 2(a) and (b). From Figs.
2 and 3, we confirm the good agreement between the sim-
ulation and experiment results even with noise and device
mismatches in the circuit.

Figure 4 shows phase-plane plots of x1(n) and x2(n)
when (a) a = −0.0625, (b) a = −0.03, (c) a = 0.125,
and (d) a = 0.03 obtained through numerical simulations.
The corresponding measured phase-plane plots with (a)
Va = −0.2, (b) Va = −0.05, (c) Va = 0.1, and (d) Va = 0.2

Table 1: Capacitance values.
Ci 470 pF
Ck 141 pF
Ca 470 pF
C f 157 pF

C12, C23, C31 110 pF
C13, C21, C32 204 pF

Cu 122 pF
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Figure 2: The simulated bifurcation diagrams of x1(n)
when we change a, (a) without, and (b) with control.
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Figure 3: The measured bifurcation diagrams of Vx1(n), (a)
without, and (b) with the feedback control.

are shown in Fig. 5. Again in the figure, voltages Vx1(n)
and Vx2(n) are normalized by 4 V. The attractors shown in
Figs. 4(b) and (d), and Figs. 5(b) and (d) seem to be pe-
riodic solutions. In contrast, the attractors shown in Figs.
4(a) and (c), and Figs. 5(a) and (c) are the closed curves so
that the solutions would be quasi-periodic.

The Lyapunov exponent is effective to distinguish the at-
tractors. However, it is difficult to accurately calculate the
Lyapunov exponents from the measured values because of
noises. Therefore, we use the test method proposed by Ichi-
nose [10] for quasi-periodic solution time-series for noisy
experimental data.

5. The test method for quasi-periodic orbits
The test method utilizes the similarity between the ran-

dom walk and the effect of dynamical noise on the quasi-
periodic orbit in which the largest Lyapunov exponent is
zero [10]. This method is also effective to test the noisy pe-
riodic orbit. In this test, whether a given time series is the
random walk or not is determined based on the augmented
Dickey-Fuller test. If p-value < 0.05, we can say the time
series under test is not quasi-periodic.

We tested the attractors in Figs. 4 and 5, and the results
are shown in Table 2. From Table 2, we find that the attrac-
tors of Figs. 4(a) and (c), and Figs. 5(a) and (c) are quasi-
periodic solutions, while the attractors of Figs. 4(b) and (d),
and Figs. 5(b) and (d) are the periodic solutions.

Table 2: Test results of the attractors.
Fig. 4 : Simulations Fig. 5 : Circuit experiments
Attractors p-value Attractors p-value

(a) 0.4974 (a) 0.2042
(b) 0.01 (b) 0.01
(c) 0.6431 (c) 0.2974
(d) 0.01 (d) 0.01
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Figure 4: The phase-plane portrait of x1(n) and x2(n) ob-
tained by the numerical simulation, (a) a = −0.0625, (b)
a = −0.03, (c) a = 0.125, and (d) a = 0.03.
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Figure 5: The measured phase-plane portrait of Vx1(n) and
Vx2(n), (a) Va = −0.2, (b) Va = −0.05, (c) Va = 0.1, and (d)
Va = 0.2.

6. The asymmetric CNN with 5 neurons
We extend the 3-neuron CNN to the 5-neuron CNN as

x1(n + 1) = kx1(n) − (α − β)y1(n) + a − β−d1−d2

4
y2(n)

−β−d1+d2

4
y3(n) − β+d1−d2

4
y4(n)

−β+d1+d2

4
y5(n) + F · u(n), (13)

x2(n + 1) = kx2(n) − (α − β)y2(n) + a − β−d1−d2

4
y3(n)

−β−d1+d2

4
y4(n) − β+d1−d2

4
y5(n)

−β+d1+d2

4
y1(n) + F · u(n), (14)

x3(n + 1) = kx3(n) − (α − β)y3(n) + a − β−d1−d2

4
y4(n)

−β−d1+d2

4
y5(n) − β+d1−d2

4
y1(n)

−β+d1+d2

4
y2(n) + F · u(n), (15)
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x4(n + 1) = kx4(n) − (α − β)y1(n) + a − β−d1−d2

4
y5(n)

−β−d1+d2

4
y1(n) − β+d1−d2

4
y2(n)

−β+d1+d2

4
y3(n) + F · u(n), (16)

x5(n + 1) = kx5(n) − (α − β)y2(n) + a − β−d1−d2

4
y1(n)

−β−d1+d2

4
y2(n) − β+d1−d2

4
y3(n)

−β+d1+d2

4
y4(n) + F · u(n), (17)

where d1 and d2 enforce the asymmetric connection.
When the u(n) = 0, the eigenvalues of the Jacobian ma-

trix J at the synchronized fixed point x∗ can be given as

λ1 = k − αγ,

λ2,3 = k −
(
α − 5

4
β

)
γ

±i

√
(5d2

1+5d2
2)γ2+2

√
5|(d2

1+d1d2−d2
2)γ2|

4
,

λ4,5 = k −
(
α − 5

4
β

)
γ

±i

√
(5d2

1+5d2
2)γ2−2

√
5|(d2

1+d1d2−d2
2)γ2|

4
. (18)

The bifurcation diagrams of x1(n) obtained through nu-
merical simulations are shown Figs. 6(a) and (b), without
and with control, respectively. The parameter values used
for these figures are: k = 0.7, α = 1, β = 0.66, d1 = d2 =

0.15, and F = 0.16. These results show that the control
procedure is applicable to the networks with 5 neurons.

7. Conclusion
We have experimentally demonstrated the stabiliza-

tion of the unstable quasi-periodic orbit in the asymmet-
ric 3-neuron CNN circuit constructed with the switched-
capacitor circuit technique. The experimental results
showed good agreements with those obtained from numer-
ical simulations even with noise and device mismatches
in the circuit. This confirms the robustness of the control
method.

The obtained attractors have been tested through the test
method dedicated to noisy time series. With this test, we
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Figure 6: The simulated bifurcation diagrams of x1(n)
when we change a, (a) without, and (b) with control.

distinguished the quasi-periodic and periodic orbits ob-
tained from experiments.

We then have extended the 3-neuron CNN to the 5-
neuron CNN. We apply the same control procedure to the
5-neuron asymmetric CNN as for the 3-neuron CNN to sta-
bilize the quasi-periodic orbits. As a results of numerical
simulations, we confirmed the effectiveness of the control
method.

As a future problem, the quasi-periodic orbit in the 5-
neuron CNN circuit will be experimentally stabilized. In
addition, more general connection structure in the CNN
will be used.
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