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Abstract—In this paper, we investigate pulse wave
propagation phenomenon in a ring of a large number of
coupled bistable oscillators. In particular, we focus our
attention to such a practical condition that each oscillator
has a slightly different intrinsic oscillation frequency in ad-
dition to noise. We elucidate numerically that the prop-
agating pulse can be observed by increasing the coupling
strength even for such a practical condition. Moreover, we
present the interaction phenomena between two pulses and
confirm pulse unification, vanishing, repulsion and passing
through phenomena.

1. Introduction

The study of systems of coupled oscillators has at-
tracted constant interest in various areas of engineering,
physics, and mathematics[1]. Examples include beam-
scanning control system, Josephson junction arrays, model
of information processing in the brain, etc. The rich
behaviors of these systems, such as mutual entrainment,
self-synchronization, wave propagation and so on, are
observed[2, 3, 4, 5].

In our previous work, we investigated pulse wave prop-
agation phenomenon in a ring of coupled identical bistable
oscillators[6]. We confirmed that the main body of
the propagating pulse wave consisted of several adjacent
oscillators with large amplitude propagating with con-
stant speed. Although such continuous propagating pulse
wave has been investigated especially for reaction-diffusion
systems[7, 8], there seems few studies on pulse wave prop-
agation phenomenon observed in simple oscillatory array.

In this paper, we investigate the pulse wave propagation
phenomenon in a ring of a large number of coupled bistable
oscillators. In particular, we focus our attention to such a
practical condition that each oscillator has a slightly differ-
ent intrinsic oscillation frequency in addition to noise. This
assumption is very natural and realistic, because there ex-
ists unavoidable error in each oscillator in addition to noise
in practical circuit. We elucidate numerically that propa-
gating pulse wave exists under both fluctuation and noise if
the coupling strength is sufficiently large.

Figure 1: A ring of inductor-coupled bistable oscillators

2. Circuit model

Figure 1 presents a ring of inductor-coupled bistable os-
cillators. We assume the hard-type nonlinearity for NC,
i.e., iNC = g1V − g3V3 + g5V5, g1, g3, g5 > 0. Namely, each
isolated oscillator has two steady-states: no oscillation and
periodic oscillation depending on the initial condition. As-
suming also a certain amount of noise , the circuit equation
can be written by the following autonomous system after
normalization[9]:

ẋi = yi + A · ni(t)
ẏi = −εωi(1− βx2

i + x
4
i )yi

−ω2
i (1+ α)xi + ω2

i α(xi−1 + xi+1)

, i = 1, 2, · · · ,N, x0 = xN , xN+1 = x1,

(· = d/dt)

(1)

where N is the number of coupled oscillators. The xi de-
notes the normalized output voltage of the i-th oscillator, yi
denotes its derivative and ωi denotes the intrinsic angular
frequency of the i-th oscillator. Parameter ε (> 0) shows
the degree of nonlinearity. Parameter α (0 � α � 1) is a
coupling factor; namely α = 1 means maximum coupling,
and α = 0 means no coupling. Parameter β controls am-
plitude of oscillation. The ni(t) is a time-varying uniform
random number distributing from −1 to +1, which is intro-
duced at each iteration of numerical integration (hence, this
term can be regarded as a noise to this system).

Although we take N = 100 throughout this paper, pulse
wave propagation phenomenon can be observed in an arbi-
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Figure 2: A bird’s-eye view plot of typical single propagat-
ing pulse observed in coupled identical oscillators without
noise for α = 0.3, β = 3.2 and ε = 0.36. Initial condition
is x22 = −0.9, x23 = −0.7, x24 = 1.6, x25 = 1.4, y22 = 0.9,
y23 = −1.6, y24 = −1.4, y25 = 1.2 and all other variables
are zero.

trary number of coupled oscillators.1 The reason why we
adopt the ring structure as a manner of coupling, is that the
effect of both ends can be neglected. For a large number
of coupled oscillators, the dynamics of inside arrays are
less influenced by the boundary condition. Therefore, we
can observe almost qualitatively the same phenomena in
the coupled lattice case for instance.

3. Pulse wave propagation phenomenon

3.1. A single propagating pulse wave

First of all, we will show a typical wave propagation
phenomenon observed in coupled identical oscillator case
without noise for review. Consequently, we put ωi = 1,
A = 0 in Eq.(1). Figure 2 presents a bird’s eye view plot
of this phenomenon for ε = 0.36, α = 0.3 and β = 3.2,
where absolute value of xi is plotted.2 It is clearly seen that
a pulse wave propagates with a constant speed which cor-
responds to the slant line in Fig.2. The main body of the
propagating pulse wave consists of several adjacent oscil-
lators with large amplitude[6]. Such a propagating pulse
exists in a wide regime in the parameter space. Figure 3
presents the existence region of such a propagating pulse
for ε = 0.36.3 It is noted that if we set β to an appropriate
value (nearly from 3.15 to 3.30), there exists the propagat-
ing pulse in a wide range of α (the “P” regime in Fig. 3).
In the left-hand side of the propagating pulse regime (the
“S” regime in Fig. 3), in which α is smaller than 0.1 ap-

1We observe this phenomenon even for the N = 6 case.
2All numerical integrations are carried out by the fourth-order Runge-

Kutta method with step size = 0.01.
3This result can be derived by computer simulation. we gradually vary

α and β with step size = 0.01, and then we check whether propagating
pulse exists or not in each point.

Figure 3: Existence regions of propagating pulse and other
phenomena in coupled identical oscillators without noise
for ε = 0.36. The “S”, “W” and “Z” are existence regions
of standing pulse, whole oscillation and no oscillation re-
spectively. This figure is obtained from the same initial
condition as Fig. 2.
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Figure 4: The propagation speed c in terms of α for three
values of β for ε = 0.36.

proximately, there exists a standing pulse4 instead of the
propagating pulse. Around the region above the propagat-
ing pulse regime (the “W” regime in Fig. 3), whole oscil-
lation such as all oscillators oscillate with large amplitude
can be observed. In the region below the propagating pulse
regime (the “Z” regime in Fig. 3), no oscillation exists.
These three regions seem to overlap to some extent with
the propagating pulse regime.

Next, we investigate the propagation speed of a pulse
wave. Figure 4 presents the propagation speed ( = c) in
terms of α (= coupling constant) with three values of β.
The propagation speed is calculated by c = N/TN , where
TN is the time for a pulse to go around the ring and where
N is the number of oscillators. Namely, we numerically
check how long does it elapse between a pulse wave pass
through a certain oscillator and the moment it is gone back
to the oscillator, and we define such time as TN . Comparing
the result for each β in Fig.4, the characteristics for α > 0.3

4We call the pulses (oscillations) which are stationary in space as
“standing pulse”. They can be periodic, quasi-periodic, and chaotic.
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Figure 5: A single propagating pulse under both frequency
fluctuation and noise for σ = 0.02, A = 0.2, α = 0.3,
β = 3.2 and ε = 0.36. Initial condition is same as Fig. 2

seems almost the same, but that for α < 0.3 differs to some
extent. Namely, there exists no propagating pulse for β =
3.3 for α < 0.3, there exists propagating pulse for β = 3.17
and 3.20. Namely, the propagation speed much depends on
α, though it is slightly influenced by the value of β.5 When
α is sufficiently small, propagation speed becomes zero,
since there is no propagating pulse wave which is clearly
shown as “S” and “W” regime in Fig.3. It is noted that
the propagation speed becomes faster with larger α. For
example, c for α = 0.9 is approximately seven times as
large as that for α = 0.2 in case of β = 3.2. The actual
values for each case is the following: c = 0.706 for α = 0.9,
and c = 0.108 for α = 0.2.

Next, we assume that each oscillator has a slightly dif-
ferent intrinsic oscillation frequency in addition to noise.
We distribute the intrinsic angular frequencies according
to Gaussian distribution with average (≡ a) equal to 1.0,
and with various standard deviation (≡ σ). We also give
time-varying noise to this system by adding a uniform ran-
dom number A · ni(t) distributing from −A to +A to the first
equation of Eq.(1) at each iteration of numerical integra-
tion. Figure 5 presents a bird’s eye view plot for σ = 0.02
and A = 0.2 with the same initial condition and parameters
as in Fig.2. It is clear that propagating pulse wave exist
in spite of both fluctuation and noise. In this case, since
the observed phenomenon is probabilistic, other phenom-
ena such as the standing pulse may be observed with the
same parameters and initial condition.

As we increase the coupling factor α gradually, the prob-
ability of emergence of the propagating pulse increases
compared to other phenomena such as standing pulse, no
oscillation and whole oscillation. Here, we make 30 trials

5In the results, the value of ε is fixed to 0.36 for simplicity. In case of
other value of ε, the propagation speed much depends on α in the same
way.
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Figure 6: Probability of emergence of the propagating
pulse in terms of coupling strength α for σ = 0.01 (0.02),
A = 0.2, β = 3.2 and ε = 0.36.

for fixed α in order to check whether the propagating pulse
exists or not. In each trial, the intrinsic angular frequencies
change every time according to Gaussian distribution. The
A is set to 0.2 which can be regarded as sufficiently large
noise. Then, we calculate the probability (P = p / q), where
p is the number of emergence of the propagating pulse and
q is the trial number. We plot α versus P in Fig. 6 for
β = 3.2 and ε = 0.36 by changing α. Comparing the result
for σ = 0.01 with that for σ = 0.02, qualitatively the same
characteristics can be observed, though the critical point
of two curves (the point at which the probability becomes
positive) are different. Namely, it is noted that when α is
small, no propagating pulse exists. In particular, when α
is nearly smaller than 0.1, the standing pulse exists for all
trials. When α becomes larger, the propagating pulse exists
in several trials out of 30 trials which include other phe-
nomena. As α becomes larger, the probability tends to 1.0,
which means that the propagating pulse exists for all trials.
Therefore, we can say that the immunity of the propagat-
ing pulse against frequency fluctuation and noise becomes
stronger as α is increased.

3.2. Interaction phenomena

When we give large initial values to more than one
place at the same time, multiple propagating pulses emerge.
They collide at a certain time and interact with each other.
In this section, we will investigate various pulse interac-
tion phenomena under frequency fluctuation and noise. For
simplicity, we show interaction among two pulses.

In coupled identical oscillators without fluctuation and
noise, there exist repulsion and passing through phenom-
ena depending mainly on initial condition[6]. Namely, if
we give the reverse-phase initial condition to two places on
the ring array, two pulse waves propagating in the oppo-
site direction collide and repel. Similarly, when we give
the same-phase initial condition, two pulse waves collide
and pass through. However, under frequency fluctuation
and noise, the above phenomenon can’t be observed eas-

- 538 -



(a) pulse unification (b) pulse vanishing

Figure 7: A bird’s-eye view plots for interaction among two
pulses for α = 0.3, β = 3.2 and ε = 0.36. In case (a), two
propagating pulses pass through two times before only one
pulse survives. In case (b), two propagating pulses pass
through two times before they vanish. Initial conditions of
case (a) and (b) is x22 (x67) = −0.9, x23 (x66) = −0.7, x24

(x65) = 1.6, x25 (x64) = 1.4, y22 (y67) = 0.9, y23 (y66) = −1.6,
y24 (y65) = −1.4, y25 (y64) = 1.2 and all other variables are
zero.

ily. For example, for both the same-phase and the reverse-
phase initial conditions, in 30 trials in which the intrinsic
angular frequencies distribute randomly obeying Gaussian
distribution (σ = 0.02) in addition to noise (A = 0.2) as
in the previous section, we observe a few samples of re-
pulsive and passing through phenomena. However we ob-
serve other phenomena such as pulse unification and pulse
vanishing phenomena in almost all other trials. Figures 7
(a) and (b) demonstrate two typical phenomena under fre-
quency fluctuation and noise for the same-phase initial con-
dition. Figure 7(a) shows that two propagating pulses pass
through a few times before only one pulse survives (the
other pulse may disappear or merge). Figure 7(b) shows
that two propagating pulses pass through a few times be-
fore they vanish. It should be noted that as α is increased,
the vanishing phenomenon is more easily observed for the
same-phase initial condition. For example, the pulse van-
ishing phenomenon can be observed in 25 samples out of
30 trials (� 83%) for α = 0.9, though it can be observed
only in 8 samples out of 30 trials (� 27%) for α = 0.3.

Next we will explain the phenomena observed for the
reverse-phase initial condition. After all, the typical phe-
nomena we observe are those of Fig. 7 (a) and (b); namely
pulse unification or vanishing. In this case, the pulse uni-
fication phenomenon can be observed more than the pulse
vanishing phenomenon as α is increased. In identical cou-
pled oscillators without frequency fluctuation and noise,
there also exists “the standing wave slip” phenomenon[6].
This phenomenon can not be observed under frequency
fluctuation and noise. This is because the standing pulse
exists only for small α in which case the immunity of the
propagating pulse against frequency fluctuation and noise

seems to be weak.

4. Conclusion

It is confirmed numerically that there exists the propagat-
ing pulse even under both frequency fluctuation and noise
for comparatively large coupling strength (we observe
mainly the standing pulses for small coupling strength).
Moreover, we present the interaction phenomena among
two pulses under such practical condition. These interac-
tions present the interesting behaviors such as pulse repul-
sion, passing through, unification and vanishing, etc. Based
on the obtained results, it is possible to assume that the
pulse wave may be observed in practical circuit. As a fu-
ture problem, we will investigate this system theoretically
and also implement this system in actual circuit.
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